Abstract Metronidazole and nimorazole are antibiotics of a nitroimidazole group which also may be potentially utilized as hypoxia radiosensitizers for the treatment of cancerous tumors. Hyperpolarization of15N nuclei in these compounds using SABRE‐SHEATH (Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei) approach provides dramatic enhancement of detection sensitivity of these analytes using magnetic resonance spectroscopy and imaging. Methanol‐d4is conventionally employed as a solvent in SABRE hyperpolarization process. Herein, we investigate SABRE‐SHEATH hyperpolarization of isotopically labeled [15N3]metronidazole and [15N3]nimorazole in nondeuterated methanol and ethanol solvents. Optimization of such hyperpolarization parameters as polarization transfer magnetic field, temperature, parahydrogen flow rate and pressure allowed us to obtain an average15N polarization of up to 7.2–7.4 % for both substrates. The highest15N polarizations were observed in methanol‐d4for [15N3]metronidazole and in ethanol for [15N3]nimorazole. At a clinically relevant magnetic field of 1.4 T the15N nuclei of these substrates possess long characteristic hyperpolarization lifetimes (T1) of ca. 1 to ca. 7 min. This study represents a major step toward SABRE in more biocompatible solvents, such as ethanol, and also paves the way for future utilization of these hyperpolarized nitroimidazoles as molecular contrast agents for MRI visualization of tumors.
more »
« less
Quantifying the effects of quadrupolar sinks via 15 N relaxation dynamics in metronidazoles hyperpolarized via SABRE-SHEATH
15 N spin–lattice relaxation dynamics in metronidazole- 15 N 3 and metronidazole- 15 N 2 isotopologues are studied for rational design of 15 N-enriched biomolecules for signal amplification by reversible exchange in microtesla fields. 15 N relaxation dynamics mapping reveals the deleterious effects of interactions with the polarization transfer catalyst and a quadrupolar 14 N nucleus within the spin-relayed 15 N– 15 N network.
more »
« less
- PAR ID:
- 10180976
- Date Published:
- Journal Name:
- Chemical Communications
- ISSN:
- 1359-7345
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We report dissolution Dynamic Nuclear Polarization (d‐DNP) of [15N3]metronidazole ([15N3]MNZ) for the first time. Metronidazole is a clinically approved antibiotic, which can be potentially employed as a hypoxia‐sensing molecular probe using15N hyperpolarized (HP) nucleus. The DNP process is very efficient for [15N3]MNZ with an exponential build‐up constant of 13.8 min using trityl radical. After dissolution and sample transfer to a nearby 4.7 T Magnetic Resonance Imaging scanner, HP [15N3]MNZ lasted remarkably long with T1values up to 343 s and15N polarizations up to 6.4 %. A time series of HP [15N3]MNZ images was acquired in vitro using a steady state free precession sequence on the15NO2peak. The signal lasted over 13 min with notably long T2of 20.5 s. HP [15N3]MNZ was injected in the tail vein of a healthy rat, and dynamic spectroscopy was performed over the rat brain. The in vivo HP15N signals persisted over 70 s, demonstrating an unprecedented opportunity for in vivo studies.more » « less
-
Abstract Diazirine moieties are chemically stable and have been incorporated into biomolecules without impediment of biological activity. The15N2labeled diazirines are appealing motifs for hyperpolarization supporting relaxation protected states with long‐lived lifetimes. The (‐CH15N2) diazirine groups investigated here are analogues to methyl groups, which provides the opportunity to transfer polarization stored on a relaxation protected (‐CH15N2) moiety to1H, thus combining the advantages of long lifetimes of15N polarization with superior sensitivity of1H detection. Despite the proximity of1H to15N nuclei in the diazirine moiety,15NT1times of up to (4.6±0.4) min and singlet lifetimesTsof up to (17.5±3.8) min are observed. Furthermore, we found terminal diazirines to support hyperpolarized1H2singlet states in CH2groups of chiral molecules. The singlet lifetime of1H singlets is up to (9.2±1.8) min, thus exceeding1HT1relaxation time (at 8.45 T) by a factor of ≈100.more » « less
-
Nuclear spin relaxation mechanisms are often difficult to isolate and identify, especially in molecules with internal flexibility. Here we combine experimental work with computation in order to determine the major mechanisms responsible for 31 P spin–lattice and singlet order (SO) relaxation in pyrophosphate, a physiologically relevant molecule. Using field-shuttling relaxation measurements (from 2 μT to 9.4 T) and rates calculated from molecular dynamics (MD) trajectories, we identified chemical shift anisotropy (CSA) and spin–rotation as the major mechanisms, with minor contributions from intra- and intermolecular coupling. The significant spin–rotation interaction is a consequence of the relatively rapid rotation of the –PO 3 2− entities around the bridging P–O bonds, and is treated by a combination of MD simulations and quantum chemistry calculations. Spin–lattice relaxation was predicted well without adjustable parameters, and for SO relaxation one parameter was extracted from the comparison between experiment and computation (a correlation coefficient between the rotational motion of the groups).more » « less
-
Abstract Nimorazole belongs to the imidazole‐based family of antibiotics to fight against anaerobic bacteria. Moreover, nimorazole is now in Phase 3 clinical trial in Europe for potential use as a hypoxia radiosensitizer for treatment of head and neck cancers. We envision the use of [15N3]nimorazole as a theragnostic hypoxia contrast agent that can be potentially deployed in the next‐generation MRI‐LINAC systems. Herein, we report the first steps to create long‐lasting (for tens of minutes) hyperpolarized state on three15N sites of [15N3]nimorazole with T1of up to ca. 6 minutes. The nuclear spin polarization was boosted by ca. 67000‐fold at 1.4 T (corresponding toP15Nof 3.2 %) by15N−15N spin‐relayed SABRE‐SHEATH hyperpolarization technique, relying on simultaneous exchange of [15N3]nimorazole and parahydrogen on polarization transfer Ir‐IMes catalyst. The presented results pave the way to efficient spin‐relayed SABRE‐SHEATH hyperpolarization of a wide range of imidazole‐based antibiotics and chemotherapeutics.more » « less
An official website of the United States government

