skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Self-optimizing parallel millifluidic reactor for scaling nanoparticle synthesis
We developed a 16-channel millifluidic reactor that uses a multiphase gas–liquid flow to continuously produce colloidal CsPbBr 3 quantum dots with a throughtput of ∼1 L h −1 . The optical properties of the product were monitored, and the reaction conditions were optimized in real time based on the in situ photoluminescence characteristics of the quantum dots.  more » « less
Award ID(s):
1728649
PAR ID:
10181407
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
56
Issue:
26
ISSN:
1359-7345
Page Range / eLocation ID:
3745 to 3748
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tellurium is a heavy chemical element exhibiting chirality, anisotropy, and strong spin-orbit coupling; conse quently, displaying a huge potential in quantum hardware technologies. In this article, tellurium quantum dots, with sizes around 19 ± 3 nm and energy bandgap around 2.4 eV, were successfully synthesized by pulsed laser ablation in liquids (PLAL). The synthesis was performed by using a nanosecond Nd:YAG laser emitting at 1064 nm and pulsing the laser beam at 1 kHz. Toluene (C6H5CH3) was used as a solvent to avoid oxidation of the dots. Non-polarized and polarized Raman spectroscopy as well as X-Ray diffraction were performed on the dots to study their quantum confinement and anisotropy. Finally, strongly confined tellurium quantum dots were obtained; and, their properties underline their potential as quantum light sources. 
    more » « less
  2. In this study, carbon dots are synthesized hydrothermally from loblolly pine using top-down and bottom-up processes. The bottom-up process dialyzed carbon dots from hydrothermally treated process liquid. Meanwhile, hydrochar was oxidized into carbon dots in the top-down method. Carbon dots from top-down and bottom-up processes were compared for their yield, size, functionality, and quantum properties. Furthermore, hydrothermal treatment temperature and residence time were evaluated on the aforementioned properties of carbon dots. The results indicate that the top-down method yields higher carbon dots than bottom-up in any given hydrothermal treatment temperature and residence time. The size of the carbon dots decreases with the increase in reaction time; however, the size remains similar with the increase in hydrothermal treatment temperature. Regarding quantum yield, the carbon dots from the top-down method exhibit higher quantum yields than bottom-up carbon dots where the quantum yield reaches as high as 48%. The only exception of the bottom-up method is the carbon dots prepared at a high hydrothermal treatment temperature (i.e., 260 °C), where relatively higher quantum yield (up to 18.1%) was observed for the shorter reaction time. Overall, this study reveals that the properties of lignocellulosic biomass-derived carbon dots differ with the synthesis process as well as the processing parameters. 
    more » « less
  3. A universal method of micro-patterning thin quantum dot films is highly desired by industry to enable integration of quantum dot materials with optoelectronic devices. Many of the methods reported so far, including specially engineered photoresist or ink-jet printing, are either of poor yield, resolution limited, difficult to scale for mass production, overly expensive or sacrifice some optical quality of the quantum dots. In our previous work, we presented a dry photolithographic lift-off method for pixelization of solution-processed materials and demonstrated its application in patterning perovskite quantum dot pixels, 10 µm in diameter, to construct a static micro-display. In this report, we present further development of this method, and demonstrate high-resolution patterning (~1 µm diameter), full-scale processing on 100 mm wafer, and multi-color integration of two different varieties of quantum dots. Perovskite and cadmium-selenide quantum dots were adopted for the experimentation, but the method can be applied to other types of solution-processed materials. We also show the viability of this method for constructing high-resolution micro-arrays of quantum dot color-convertors by fabricating patterned films directly on top of a blue gallium-nitride LED substrate. The green perovskite quantum dots used for fabrication are synthesized and prepared by our research group via room temperature ligand-assisted reprecipitation method, and these synthesized quantum dots have a photoluminescent quantum yield of 93.6% and full-width half-maximum emission linewidth less than 20 nm. Our results demonstrate the viability of this method for use in scalable manufacturing of high-resolution micro-displays. 
    more » « less
  4. This study demonstrates the potential application of polyethyleneimine (PEI)-modified quantum dots for sensing heavy metals, specifically copper ions, in aqueous matrices. Quantum dots were synthesized in aqueous phase, revealing a spherical morphology, a size of less than 5 nm, and a face-centered cubic crystalline structure. The presence of PEI on the quantum dots' surface significantly enhanced their photoluminescence within the range of 400 nm to 650 nm. To assess the sensor capabilities of PEI-capped quantum dots, two copper precursors (CuSO4 and CuNO3) were utilized at concentrations ranging from 0 ppm to 38 ppm. A systematic decrease in fluorescence intensity with increasing copper concentration was observed, establishing a quantitative relationship. These findings underscore the potential of PEI-modified quantum dots as efficient and selective sensors for copper ions. The concentration-dependent response in fluorescence intensity reflects the sensitivity of the system, suggesting promising applications in the field of heavy metal detection. 
    more » « less
  5. We report a photolithography‐based technology for patterning quantum dot color converters for micro‐LED displays. A patterning resolution of ~1 µm is achieved. The method can be applied to any color converter materials. Integration of perovskite quantum dots and CdSe/ZnS quantum dots is demonstrated to show the versatility of the technology. 
    more » « less