skip to main content


Title: Materials Design Principles for Air‐Stable Lithium/Sodium Solid Electrolytes
Abstract

Sulfide solid electrolytes are promising inorganic solid electrolytes for all‐solid‐state batteries. Despite their high ionic conductivity and desirable mechanical properties, many known sulfide solid electrolytes exhibit poor air stability. The spontaneous hydrolysis reactions of sulfides with moisture in air lead to the release of toxic hydrogen sulfide and materials degradation, hindering large‐scale manufacturing and applications of sulfide‐based solid‐state batteries. In this work, we systematically investigate the hydrolysis and reduction reactions in Li‐ and Na‐containing sulfides and chlorides by applying thermodynamic analyses based on a first principles computation database. We reveal the stability trends among different chemistries and identify the effect of cations, anions, and Li/Na content on moisture stability. Our results identify promising materials systems to simultaneously achieve desirable moisture stability and electrochemical stability, and provide the design principles for the development of air‐stable solid electrolytes.

 
more » « less
NSF-PAR ID:
10181515
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
132
Issue:
40
ISSN:
0044-8249
Page Range / eLocation ID:
p. 17625-17629
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Sulfide solid electrolytes are promising inorganic solid electrolytes for all‐solid‐state batteries. Despite their high ionic conductivity and desirable mechanical properties, many known sulfide solid electrolytes exhibit poor air stability. The spontaneous hydrolysis reactions of sulfides with moisture in air lead to the release of toxic hydrogen sulfide and materials degradation, hindering large‐scale manufacturing and applications of sulfide‐based solid‐state batteries. In this work, we systematically investigate the hydrolysis and reduction reactions in Li‐ and Na‐containing sulfides and chlorides by applying thermodynamic analyses based on a first principles computation database. We reveal the stability trends among different chemistries and identify the effect of cations, anions, and Li/Na content on moisture stability. Our results identify promising materials systems to simultaneously achieve desirable moisture stability and electrochemical stability, and provide the design principles for the development of air‐stable solid electrolytes.

     
    more » « less
  2. Abstract

    Over the past decade, solid‐state batteries have garnered significant attentions due to their potentials to deliver high energy density and excellent safety. Considering the abundant sodium (Na) resources in contrast to lithium (Li), the development of sodium‐based batteries has become increasingly appealing. Sulfide‐based superionic conductors are widely considered as promising solid eletcrolytes (SEs) in solid‐state Na batteries due to the features of high ionic conductivity and cold‐press densification. In recent years, tremendous efforts have been made to investigate sulfide‐based Na‐ion conductors on their synthesis, compositions, conductivity, and the feasibility in batteries. However, there are still several challenges to overcome for their practical applications in high performance solid‐state Na batteries. This article provides a comprehensive update on the synthesis, structure, and properties of three dominant sulfide‐based Na‐ion conductors (Na3PS4, Na3SbS4, and Na11Sn2PS12), and their families that have a variety of anion and cation doping. Additionally, the interface stability of these sulfide electrolytes toward the anode is reviewed, as well as the electrochemical performance of solid‐state Na batteries based on different types of cathode materials (metal sulfides, oxides, and organics). Finally, the perspective and outlook for the development and practical utilization of sulfide‐based SE in solid‐state batteries are discussed.

     
    more » « less
  3. Abstract

    Enabling all‐solid‐state Li‐ion batteries requires solid electrolytes with high Li ionic conductivity and good electrochemical stability. Following recent experimental reports of Li3YCl6and Li3YBr6as promising new solid electrolytes, we used first principles computation to investigate the Li‐ion diffusion, electrochemical stability, and interface stability of chloride and bromide materials and elucidated the origin of their high ionic conductivities and good electrochemical stabilities. Chloride and bromide chemistries intrinsically exhibit low migration energy barriers, wide electrochemical windows, and are not constrained to previous design principles for sulfide and oxide Li‐ion conductors, allowing for much greater freedom in structure, chemistry, composition, and Li sublattice for developing fast Li‐ion conductors. Our study highlights chloride and bromide chemistries as a promising new research direction for solid electrolytes with high ionic conductivity and good stability.

     
    more » « less
  4. Abstract

    Enabling all‐solid‐state Li‐ion batteries requires solid electrolytes with high Li ionic conductivity and good electrochemical stability. Following recent experimental reports of Li3YCl6and Li3YBr6as promising new solid electrolytes, we used first principles computation to investigate the Li‐ion diffusion, electrochemical stability, and interface stability of chloride and bromide materials and elucidated the origin of their high ionic conductivities and good electrochemical stabilities. Chloride and bromide chemistries intrinsically exhibit low migration energy barriers, wide electrochemical windows, and are not constrained to previous design principles for sulfide and oxide Li‐ion conductors, allowing for much greater freedom in structure, chemistry, composition, and Li sublattice for developing fast Li‐ion conductors. Our study highlights chloride and bromide chemistries as a promising new research direction for solid electrolytes with high ionic conductivity and good stability.

     
    more » « less
  5. Abstract

    The introduction of new, safe, and reliable solid‐electrolyte chemistries and technologies can potentially overcome the challenges facing their liquid counterparts while widening the breadth of possible applications. Through tech‐historic evolution and rationally analyzing the transition from liquid‐based Li‐ion batteries (LIBs) to all‐solid‐state Li‐metal batteries (ASSLBs), a roadmap for the development of a successful oxide and sulfide‐based ASSLB focusing on interfacial challenges is introduced, while accounting for five parameters: energy density, power density, longterm stability, processing, and safety. First taking a strategic approach, this review dismantles the ASSLB into its three major components and discusses the most promising solid electrolytes and their most advantageous pairing options with oxide cathode materials and the Li metal anode. A thorough analysis of the chemical, electrochemical, and mechanical properties of the two most promising and investigated classes of inorganic solid electrolytes, namely oxides and sulfides, is presented. Next, the overriding challenges associated with the pairing of the solid electrolyte with oxide‐based cathodes and a Li‐metal anode, leading to limited performance for solid‐state batteries are extensively addressed and possible strategies to mitigate these issues are presented. Finally, future perspectives, guidelines, and selective interface engineering strategies toward the resolution of these challenges are analyzed and discussed.

     
    more » « less