In structural analysis, it is common practice to construct a finite element (FE) model of an as-built structure using nominal material properties and idealized boundary conditions. However, behaviors of the FE model generally differ from the as-built structure in the field. To minimize the differences, selected parameters of the FE model can be updated using experimental measurements from the as-built structure. This paper investigates the FE model updating of a full-scale concrete frame structure with over a thousand degrees-of-freedom. Given experimental measurements obtained during a shaker test, frequency-domain modal properties of the concrete structure are identified. A non-convex optimization problemmore »
A Comparative Study of Frequency-domain Finite Element Updating Approaches Using Different Optimization Procedures
In order to achieve a more accurate finite element (FE) model for an as-built structure, experimental data collected from the actual structure can be used to update selected parameters of the FE model. The process is known as FE model updating. This research compares the performance of two frequency-domain model updating approaches. The first approach minimizes the difference between experimental and simulated modal properties, such as natural frequencies and mode shapes. The second approach minimizes modal dynamic residuals from the generalized eigenvalue equation involving stiffness and mass matrices. Both
model updating approaches are formulated as an optimization problem with selected updating parameters as optimization variables. This research also compares the performance of different optimization procedures, including a nonlinear least-square, an interior-point and an iterative linearization procedure. The comparison is conducted using a numerical example of a space frame structure. The modal dynamic residual approach shows better performance than
the modal property difference approach in updating model parameters of the space frame structure.
- Award ID(s):
- 1634483
- Publication Date:
- NSF-PAR ID:
- 10181590
- Journal Name:
- EWSHM
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Numerical modeling of actual structural systems is a very complex task mainly due to the lack of complete knowledge on the involved parameters. Simplified assumptions on the uncertain geometry, material properties and boundary conditions make the numerical model response differ from the actual structural response. Improvements of the finite element (FE) models to obtain accurate response predictions can be achieved by vibration based FE model updating which uses experimental measures to minimize the differences between the numerical and experimental modal features (i.e. natural frequencies and mode shapes). Within this context, probabilistic model updating procedures based on the Bayes’ theorem weremore »
-
Numerical modeling of actual structural systems is a very complex task mainly due to the lack of complete knowledge on the involved parameters. Simplified assumptions on the uncertain geometry, material properties and boundary conditions make the numerical model response differ from the actual structural response. Improvements of the finite element (FE) models to obtain accurate response predictions can be achieved by vibration based FE model updating which uses experimental measures to minimize the differences between the numerical and experimental modal features (i.e. natural frequencies and mode shapes). Within this context, probabilistic model updating procedures based on the Bayes’ theorem weremore »
-
ABSTRACT: This paper explores the use of cyber-physical systems (CPS) for optimal design in wind engineering. The approach combines the accuracy of physical wind tunnel testing with the ability to efficiently explore a solution space using numerical optimization algorithms. The approach is fully automated, with experiments executed in a boundary layer wind tunnel (BLWT), sensor feedback monitored by a high-performance computer, and actuators used to bring about physical changes in the BLWT. Because the model is undergoing physical change as it approaches the optimal solution, this approach is given the name “loop-in-the-model” testing. The building selected for this study ismore »
-
Recently, considerable research attention has been paid to graph embedding, a popular approach to construct representations of vertices in latent space. Due to the curse of dimensionality and sparsity in graphical datasets, this approach has become indispensable for machine learning tasks over large networks. The majority of the existing literature has considered this technique under the assumption that the network is static. However, networks in many applications, including social networks, collaboration networks, and recommender systems, nodes, and edges accrue to a growing network as streaming. A small number of very recent results have addressed the problem of embedding for dynamicmore »