skip to main content

Title: Solitary waves perturbed by a broad sill. Part 1. Propagation across the sill
Stability of a solitary wave disturbed by a submerged flat sill is investigated experimentally. For sills narrow compared with the solitary wave, the transmitted waves are found to be unaffected in waveform and amplitude. A wider sill disturbs the solitary wave resulting in the formation of a dispersive wavetrain following the transmitted wave. In some cases, the wave amplitude recovers, despite being perturbed, to the state of an unobstructed solitary-wave state at a certain distance beyond the sill. Wider sills cause wave breaking that occurs over the sill or, in some cases, after the wave passes through the sill. Details of waveform transformation leading toward the breaking and subsequent energy dissipation are discussed.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of Fluid Mechanics
Page Range / eLocation ID:
916 to 934
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Evolution of a solitary wave travelling along a submerged sill is studied. The disturbance from the sill creates a phase lag along the wave crest between the ambient water depth and the shallower depth over the sill. This phase lag causes wave diffraction between the different parts of the wave, which induces radiating waves off the edge of the sill. The radiating waves act as an outlet for wave energy, resulting in significant and continual amplitude reduction of the solitary wave. Findings from laboratory experiments are confirmed numerically by simulating a much longer propagation distance with different sill breadths. When the sill breadth is narrow, the solitary wave slowly attenuates by wave radiation, maintaining a quasi-steady wave pattern. This is not the case for a broader sill. The resulting phase lag on the sill continually changes the wave pattern and the attenuation rate is substantially greater than the rate for the case of the narrow sill. The significant energy radiation together with the continual change in the wave formation eventually leads to the complete annihilation of the solitary wave in a wave tank. We also report a wave-breaking process along the sill observed in laboratory experiments. This breaking is induced when the wave amplitude on the sill is smaller than the maximum amplitude of a solitary wave in a uniform depth. Also found is the wake-like formation of gravity–capillary waves behind the breaking crest forming on the sill. Other features associated with the breaking are presented. 
    more » « less
  2. Bathymetric sills are important features in the ocean-filled cavities beneath a few fast-retreating ice shelves in West Antarctica and northern Greenland. The sills can be high enough to obstruct the cavity circulation and thereby modulate glacial melt rates. This study focuses on the idealized problem of diabatically driven, sill-constrained overturning circulation in a cavity. The circulation beneath fast-melting ice shelves can generally be characterized by an inflow of relatively warm dense water (with temperatures of a few degrees Celsius above the local freezing point) at depth and cold, less-dense, outflowing water, which exhibits an approximately two-layer structure in observations. We use a two-layer isopycnal hydrostatic model to study the cross-sill exchange of these waters in ice shelf cavities wide enough to be rotationally dominated. A quasigeostrophic constraint is determined for the transport imposed by the stratification. Relative to this constraint, the key parameters controlling the transport and its variability are the sill height relative to the bottom layer thickness and the strength of the friction relative to the potential vorticity (PV) gradient imposed by the sill. By varying these two key parameters, we simulate a diversity of flow phenomena. For a given meridional pressure gradient, the cross-sill transport is controlled by sill height beyond a critical threshold in the eddy-permitting, low-friction regime, while it is insensitive to friction in both the low-friction and high-friction regimes. We present theoretical ideas to explain the flow characteristics: a Stommel boundary layer for the friction-dominated regime; mean–eddy PV balances and energy conversion in the low-friction, low-sill regime; and hydraulic control in the low-friction, high-sill regime, with various estimates for transport in each of these regimes.

    more » « less
  3. Abstract

    Large-amplitude internal solitary wave (ISW) shoaling, breaking, and run-up was tracked continuously by a dense and rapidly sampling array spanning depths from 500 m to shore near Dongsha Atoll in the South China Sea. Incident ISW amplitudes ranged between 78 and 146 m with propagation speeds between 1.40 and 2.38 m s−1. The ratio between wave amplitude and a critical amplitudeA0controlled breaking type and was related to wave speedcpand depth. Fissioning ISWs generated larger trailing elevation waves when the thermocline was deep and evolved into onshore propagating bores in depths near 100 m. Collapsing ISWs contained significant mixing and little upslope bore propagation. Bores contained significant onshore near-bottom kinetic and potential energy flux and significant offshore rundown and relaxation phases before and after the bore front passage, respectively. Bores on the shallow forereef drove bottom temperature variation in excess of 10°C and near-bottom cross-shore currents in excess of 0.4 m s−1. Bores decelerated upslope, consistent with upslope two-layer gravity current theory, though run-up extentXrwas offshore of the predicted gravity current location. Background stratification affected the bore run-up, withXrfarther offshore when the Korteweg–de Vries nonlinearity coefficientαwas negative. Fronts associated with the shoaling local internal tide, but equal in magnitude to the soliton-generated bores, were observed onshore of 20-m depth.

    more » « less
  4. Abstract

    Linear theory has long been used to study mountain waves and has been successful in describing much of their behaviour. In the simplest theoretical context, that of two‐dimensional steady‐state flow with constant Brunt–Väisälä frequency (N) and horizontal wind speed (U), finite‐amplitude effects are relatively minor until wave breaking occurs. However, in more complex environmental profiles, significant finite‐amplitude effects occur below the wave‐breaking threshold. We constructed a linearized version of a fully nonlinear time‐dependent model, thereby facilitating direct comparisons between linear and finite‐amplitude solutions in cases with upstream profiles representative of typical real‐world events. Beginning with the simplest profile that includes a tropopause, namely an environment with constant upstream wind speed and two layers of constant static stability, we progressively investigate more complex profiles that include vertical wind shear typical of the midlatitude westerlies. Our results demonstrate that, even without wave breaking, finite‐amplitude effects can play an important role in modulating the mountain‐wave amplitude and gravity‐wave drag. The modulation is a function of the tropopause height and is most pronounced when the cross‐ridge flow increases strongly with height.

    more » « less
  5. The formation of a recirculating subsurface core in an internal solitary wave (ISW) of depression, shoaling over realistic bathymetry, is explored through fully nonlinear and nonhydrostatic two-dimensional simulations. The computational approach is based on a high-resolution/accuracy deformed spectral multidomain penalty-method flow solver, which employs the recorded bathymetry, background current, and stratification profile in the South China Sea. The flow solver is initialized using a solution of the fully nonlinear Dubreil–Jacotin–Long equation. During shoaling, convective breaking precedes core formation as the rear steepens and the trough decelerates, allowing heavier fluid to plunge forward, forming a trapped core. This core-formation mechanism is attributed to a stretching of a near-surface background vorticity layer. Since the sign of the vorticity is opposite to that generated by the propagating wave, only subsurface recirculating cores can form. The onset of convective breaking is visualized, and the sensitivity of the core properties to changes in the initial wave, near-surface background shear, and bottom slope is quantified. The magnitude of the near-surface vorticity determines the size of the convective-breaking region, and the rapid increase of local bathymetric slope accelerates core formation. If the amplitude of the initial wave is increased, the subsequent convective-breaking region increases in size. The simulations are guided by field data and capture the development of the recirculating subsurface core. The analyzed parameter space constitutes a baseline for future three-dimensional simulations focused on characterizing the turbulent flow engulfed within the convectively unstable ISW.

    more » « less