skip to main content


Title: Finite Slip Models of the 2019 Ridgecrest Earthquake Sequence Constrained by Space Geodetic Data and Aftershock Locations
ABSTRACT The July 2019 Ridgecrest, California, earthquake sequence involved two large events—the M 6.4 foreshock and the M 7.1 mainshock that ruptured a system of intersecting strike-slip faults. We present analysis of space geodetic observations including Synthetic Aperture Radar and Global Navigation Satellite System data, geological field mapping, and seismicity to constrain the subsurface rupture geometry and slip distribution. The data render a complex pattern of faulting with a number of subparallel as well as cross-cutting fault strands that exhibit variations in both strike and dip angles, including a “flower structure” formed by shallow splay faults. Slip inversions are performed using both homogeneous and layered elastic half-space models informed by the local seismic tomography data. The inferred slip distribution suggests a moderate amount of the shallow coseismic slip deficit. The peak moment release occurred in the depth interval of 3–4 km, consistent with results from previous studies of major strike-slip earthquakes, and the depth distribution of seismicity in California. We use the derived slip models to investigate stress transfer and possible triggering relationships between the M 7.1 mainshock and the M 6.4 foreshock, as well as other moderate events that occurred in the vicinity of the M 7.1 hypocenter. Triggering is discouraged for the average strike of the M 7.1 rupture (320°) but encouraged for the initial orientation of the mainshock rupture suggested by the first-motion data (340°). This lends support to a scenario according to which the earthquake rupture nucleated on a small fault that was more optimally oriented with respect to the regional stress and subsequently propagated along the less-favorably oriented pre-existing faults, possibly facilitated by dynamic weakening. The nucleation site of the mainshock experienced positive dynamic Coulomb stress changes that are much larger than the static stress changes, yet the former failed to initiate rupture.  more » « less
Award ID(s):
1945760 1945781 1841273
NSF-PAR ID:
10181773
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Bulletin of the Seismological Society of America
Volume:
110
Issue:
4
ISSN:
0037-1106
Page Range / eLocation ID:
1660 to 1679
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT The 2019 Ridgecrest earthquake sequence culminated in the largest seismic event in California since the 1999 Mw 7.1 Hector Mine earthquake. Here, we combine geodetic and seismic data to study the rupture process of both the 4 July Mw 6.4 foreshock and the 6 July Mw 7.1 mainshock. The results show that the Mw 6.4 foreshock rupture started on a northwest-striking right-lateral fault, and then continued on a southwest-striking fault with mainly left-lateral slip. Although most moment release during the Mw 6.4 foreshock was along the southwest-striking fault, slip on the northwest-striking fault seems to have played a more important role in triggering the Mw 7.1 mainshock that happened ∼34  hr later. Rupture of the Mw 7.1 mainshock was characterized by dominantly right-lateral slip on a series of overall northwest-striking fault strands, including the one that had already been activated during the nucleation of the Mw 6.4 foreshock. The maximum slip of the 2019 Ridgecrest earthquake was ∼5  m, located at a depth range of 3–8 km near the Mw 7.1 epicenter, corresponding to a shallow slip deficit of ∼20%–30%. Both the foreshock and mainshock had a relatively low-rupture velocity of ∼2  km/s, which is possibly related to the geometric complexity and immaturity of the eastern California shear zone faults. The 2019 Ridgecrest earthquake produced significant stress perturbations on nearby fault networks, especially along the Garlock fault segment immediately southwest of the 2019 Ridgecrest rupture, in which the coulomb stress increase was up to ∼0.5  MPa. Despite the good coverage of both geodetic and seismic observations, published coseismic slip models of the 2019 Ridgecrest earthquake sequence show large variations, which highlight the uncertainty of routinely performed earthquake rupture inversions and their interpretation for underlying rupture processes. 
    more » « less
  2. Abstract

    We develop finite element models of the coseismic displacement field accounting for the 3D elastic structures surrounding the epicentral area of the 2019 Ridgecrest earthquake sequence containing two major events of Mw7.1 and Mw6.4. The coseismic slip distribution is inferred from the surface displacement field recorded by interferometric synthetic aperture radar. The rupture dip geometry is further optimized using a novel nonlinear‐crossover‐linear inversion approach. It is found that accounting for elastic heterogeneity and fault along‐strike curvilinearity improves the fit to the observed displacement field and yields a more accurate estimate of geodetic moment and Coulomb stress changes. We observe spatial correlations among the locations of aftershocks and patches of high slip, and rock anomalous elastic properties, suggesting that the shallow crust's elastic structures possibly controlled the Ridgecrest earthquake sequence. Most of the coseismic slip with a peak slip of 7.4 m at 3.6 km depth occurred above a zone of reducedS‐wave velocity and significant post‐Mw7.1 afterslip. This implies that viscous materials or fluid presence might have contributed to the low rupture velocity of the mainshock. Moreover, the zone of high slip on the northwest‐trending fault segment is laterally bounded by two aftershock clusters, whose location is characterized by intermediate rock rigidity. Notably, some minor orthogonal faults consistently end above a subsurface rigid body. Overall, these observations of structural controls improve our understandings of the seismogenesis within incipient fault systems.

     
    more » « less
  3. null (Ed.)
    ABSTRACT We investigate the deformation processes during the 2019 Ridgecrest earthquake sequence by combining Global Navigation Satellite Systems, strong-motion, and Interferometric Synthetic Aperture Radar datasets in a joint inversion. The spatial complementarity of slip between the Mw 6.4 foreshock, Mw 7.1 mainshock, and afterslip suggests the importance of static stress transfer as a triggering mechanism during the rupture sequence. The coseismic slip of the foreshock concentrates mainly on the east-northeast–west-southwest fault above the hypocenter at depths of 2–8 km. The slip distribution of the mainshock straddles the region above the hypocenter with two isolated patches located to the north-northwest and south-southeast, respectively. The geodetically determined moment magnitudes of the foreshock and mainshock are equivalent to moment magnitudes Mw 6.4 and 7.0, assuming a rigidity of 30 GPa. We find a significant shallow slip deficit (>60%) in the Ridgecrest ruptures, likely resulting from the immature fault system in which the sequence occurred. Rapid afterslip concentrates at depths of 2–6 km, surrounding the rupture areas of the foreshock and mainshock. The ruptures also accelerated viscoelastic flow at lower-crustal depths. The Garlock fault was loaded at several locations, begging the question of possible delayed triggering. 
    more » « less
  4. Abstract

    We conduct a detailed study of the foreshock sequence preceding the 2010Mw6.7 Yushu, Qinghai earthquake in the Tibetan plateau by examining continuous waveforms recorded at a seismic station near the mainshock rupture zone. By using a deep learning phase picker—EQTransformer and a matched‐filter technique, we identify 120 foreshocks with magnitude ranging from −0.7 to 1.6, starting with aMw4.6 foreshock approximately 2 hr before theMw6.7 Yushu mainshock. Our analyses show that the foreshock sequence follows a typical Omori's law decay with ap‐value of 0.73 and the Gutenberg‐Richer frequency‐magnitudeb‐value of 0.66. We do not find any evidence of accelerating events leading up to the Yushu mainshock. Hence, they could be considered as aftershocks of theMw4.6 earthquake. We further invert for the focal mechanisms and rupture directions for both the largest foreshock and the mainshock. TheMw4.6 foreshock likely occurred on a NE‐SW trending fault conjugating to the NW‐SE trending fault of the mainshock. Coulomb stress analysis suggests theMw4.6 foreshock induces negative stress on the mainshock source area. These observations do not support either the pre‐slip or the cascade triggering model for foreshock generation. The occurrence of the foreshock, mainshock and large aftershocks appear to be modulated by the Earth's tidal forces, likely reflecting the role of high pore‐fluid pressures. Our observations, together with other recent studies, suggest that extensional step‐overs and conjugate faults along major strike‐slip faults play an important role in generating short‐term foreshock sequences.

     
    more » « less
  5. SUMMARY In the Gulf of California, Mexico, the relative motion across the North America–Pacific boundary is accommodated by a series of marine transform faults and spreading centres. About 40 M> 6 earthquakes have occurred in the region since 1960. On 2009 August 3, an Mw 6.9 earthquake occurred near Canal de Ballenas in the region. The earthquake was a strike-slip event with a shallow hypocentre that is likely close to the seafloor. In contrast to an adjacent M7 earthquake, this earthquake triggered a ground-motion-based earthquake early warning algorithm being tested in southern California (∼600 km away). This observation suggests that the abnormally large ground motions and dynamic strains observed for this earthquake relate to its rupture properties. To investigate this possibility, we image the rupture process and resolve the slip distribution of the event using a P-wave backprojection approach and a teleseismic, finite-fault inversion method. Results from these two independent analyses indicate a relatively simple, unilateral rupture propagation directed along-strike in the northward direction. However, the average rupture speed is estimated around 4 km s−1, suggesting a possible supershear rupture. The supershear speed is also supported by a Rayleigh wave Mach cone analysis, although uncertainties in local velocity structure preclude a definitive conclusion. The Canal de Ballenas earthquake dynamically triggered seismicity at multiple sites in California, with triggering response characteristics varying from location-to-location. For instance, some of the triggered earthquakes in California occurred up to 24 hr later, suggesting that nonlinear triggering mechanisms likely have modulated their occurrence. 
    more » « less