skip to main content


Title: High-pressure annealing driven nanocrystal formation in Zr50Cu40Al10 metallic glass and strength increase
Abstract

Pressure-induced structural changes in metallic glasses have been of great interest as they are expected to open new ways to synthesize novel materials with unexpected properties. Here, we investigated the effect of simultaneous high-pressure and high-temperature treatment on the structure and properties of a Zr50Cu40Al10metallic glass by in situ X-ray structure measurement and property analysis of the final material. We found the unusual formation of Cu-rich nanocrystals at high pressure and temperature, accompanied by significant strength and hardness enhancement. Based on reverse Monte Carlo modeling and molecular dynamics simulations, the structure of the metallic glass changed to a densely packed, chemically uniform configuration with high short-range and medium-range ordering at high pressure and temperature. These results show that high-pressure annealing processes provide a new way to improve and control properties without changing their composition.

 
more » « less
NSF-PAR ID:
10181812
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Materials
Volume:
1
Issue:
1
ISSN:
2662-4443
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2. Abstract

    Metallic glasses are expected to have quite tunable structures in their configuration space, without the strict constraints of a well-defined crystalline symmetry and large energy barriers separating different states in crystals. However, effectively modulating the structure of metallic glasses is rather difficult. Here, using complementary in situ synchrotron x-ray techniques, we reveal thermal-driven structural ordering in a Ce65Al10Co25metallic glass, and a reverse disordering process via a pressure-induced rejuvenation between two states with distinct structural order characteristics. Studies on other metallic glass samples with different compositions also show similar phenomena. Our findings demonstrate the feasibility of two-way structural tuning states in terms of their dramatic ordering and disordering far beyond the nearest-neighbor shells with the combination of temperature and pressure, extending accessible states of metallic glasses to unexplored configuration spaces.

     
    more » « less
  3. Abstract

    As a new class of multi-principal component oxides with high chemical disorder, high-entropy oxides (HEOs) have attracted much attention. The stability and tunability of their structure and properties are of great interest and importance, but remain unclear. By using in situ synchrotron radiation X-ray diffraction, Raman spectroscopy, ultraviolet–visible absorption spectroscopy, and ex situ high-resolution transmission electron microscopy, here we show the existence of lattice distortion in the crystalline (Ce0.2La0.2Pr0.2Sm0.2Y0.2)O2−δHEO according to the deviation of bond angles from the ideal values, and discover a pressure-induced continuous tuning of lattice distortion (bond angles) and band gap. As continuous bending of bond angles, pressure eventually induces breakdown of the long-range connectivity of lattice and causes amorphization. The amorphous state can be partially recovered upon decompression, forming glass–nanoceramic composite HEO. These results reveal the unexpected flexibility of the structure and properties of HEOs, which could promote the fundamental understanding and applications of HEOs.

     
    more » « less
  4. Abstract

    Lithium aluminoborate glasses have recently been found to feature high resistance to crack initiation during indentation, but suffer from relatively low hardness and chemical durability. To further understand the mechanical properties of this glass family and their correlation with the network structure, we here study the effect of adding SiO2to a 25Li2O–20Al2O3–55B2O3glass on the structure and mechanical properties. Addition of silica increases the average network rigidity, but meanwhile its open tetrahedral structure decreases the atomic packing density. Consequently, we only observe a minor increase in hardness and glass transition temperature, and a decrease in Poisson's ratio. The addition of SiO2, and thus removal of Al2O3and/or B2O3, also makes the network less structurally adaptive to applied stress, since Al and B easily increase their coordination number under pressure, while this is not the case for Si under modest pressures. As such, although the silica‐containing networks have more free volume, they cannot densify more during indentation, which in turn leads to an overall decrease in crack resistance upon SiO2addition. Our work shows that, although pure silica glass has very high glass transition temperature and relatively high hardness, its addition in oxide glasses does not necessarily lead to significant increase in these properties due to the complex structural interactions in mixed network former glasses and the competitive effects of free volume and network rigidity.

     
    more » « less
  5. The traditional von Neumann architecture limits the increase in computing efficiency and results in massive power consumption in modern computers due to the separation of storage and processing units. The novel neuromorphic computation system, an in-memory computing architecture with low power consumption, is aimed to break the bottleneck and meet the needs of the next generation of artificial intelligence (AI) systems. Thus, it is urgent to find a memory technology to implement the neuromorphic computing nanosystem. Nowadays, the silicon-based flash memory dominates non-volatile memory market, however, it is facing challenging issues to achieve the requirements of future data storage device development due to the drawbacks, such as scaling issue, relatively slow operation speed, and high voltage for program/erase operations. The emerging resistive random-access memory (RRAM) has prompted extensive research as its simple two-terminal structure, including top electrode (TE) layer, bottom electrode (BE) layer, and an intermediate resistive switching (RS) layer. It can utilize a temporary and reversible dielectric breakdown to cause the RS phenomenon between the high resistance state (HRS) and the low resistance state (LRS). RRAM is expected to outperform conventional memory device with the advantages, notably its low-voltage operation, short programming time, great cyclic stability, and good scalability. Among the materials for RS layer, indium gallium zinc oxide (IGZO) has shown attractive prospects in abundance and high atomic diffusion property of oxygen atoms, transparency. Additionally, its electrical properties can be easily modulated by controlling the stoichiometric ratio of indium and gallium as well as oxygen potential in the sputter gas. Moreover, since the IGZO can be applied to both the thin-film transistor (TFT) channel and RS layer, it has a great potential for fully integrated transparent electronics application. In this work, we proposed amorphous transparent IGZO-based RRAMs and investigated switching behaviors of the memory cells prepared with different top electrodes. First, ITO was choosing to serve as both TE and BE to achieve high transmittance. A multi-target magnetron sputtering system was employed to deposit all three layers (TE, RS, BE layers) on glass substrate. I-V characteristics were evaluated by a semiconductor parameter analyzer, and the bipolar RS feature of our RRAM devices was demonstrated by typical butterfly curves. The optical transmission analysis was carried out via a UV-Vis spectrometer and the average transmittance was around 80% out of entire devices in the visible-light wavelength range, implying high transparency. We adjusted the oxygen partial pressure during the sputtering of IGZO to optimize the property because the oxygen vacancy concentration governs the RS performance. Electrode selection is crucial and can impact the performance of the whole device. Thus, Cu TE was chosen for our second type of device because the diffusion of Cu ions can be beneficial for the formation of the conductive filament (CF). A ~5 nm SiO 2 barrier layer was employed between TE and RS layers to confine the diffusion of Cu into the RS layer. At the same time, this SiO 2 inserting layer can provide an additional interfacial series resistance in the device to lower the off current, consequently, improve the on/off ratio and whole performance. Finally, an oxygen affinity metal Ti was selected as the TE for our third type of device because the concentration of the oxygen atoms can be shifted towards the Ti electrode, which provides an oxygengettering activity near the Ti metal. This process may in turn lead to the formation of a sub-stoichiometric region in the neighboring oxide that is believed to be the origin of better performance. In conclusion, the transparent amorphous IGZO-based RRAMs were established. To tune the property of RS layer, the sputtering conditions of RS were varied. To investigate the influence of TE selections on switching performance of RRAMs, we integrated a set of TE materials, and a barrier layer on IGZO-based RRAM and compared the switch characteristics. Our encouraging results clearly demonstrate that IGZO is a promising material in RRAM applications and breaking the bottleneck of current memory technologies. 
    more » « less