skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Heavy‐Atom Tunneling Through Crossing Potential Energy Surfaces: Cyclization of a Triplet 2‐Formylarylnitrene to a Singlet 2,1‐Benzisoxazole
Abstract

Not long ago, the occurrence of quantum mechanical tunneling (QMT) chemistry involving atoms heavier than hydrogen was considered unreasonable. Contributing to the shift of this paradigm, we present here the discovery of a new and distinct heavy‐atom QMT reaction. Triplet syn‐2‐formyl‐3‐fluorophenylnitrene, generated in argon matrices by UV‐irradiation of an azide precursor, was found to spontaneously cyclize to singlet 4‐fluoro‐2,1‐benzisoxazole. Monitoring the transformation by IR spectroscopy, temperature‐independent rate constants (k≈1.4×10−3 s−1; half‐life of ≈8 min) were measured from 10 to 20 K. Computational estimated rate constants are in fair agreement with experimental values, providing evidence for a mechanism involving heavy‐atom QMT through crossing triplet to singlet potential energy surfaces. Moreover, the heavy‐atom QMT takes place with considerable displacement of the oxygen atom, which establishes a new limit for the heavier atom involved in a QMT reaction in cryogenic matrices.

 
more » « less
NSF-PAR ID:
10182094
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
132
Issue:
40
ISSN:
0044-8249
Page Range / eLocation ID:
p. 17775-17780
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Not long ago, the occurrence of quantum mechanical tunneling (QMT) chemistry involving atoms heavier than hydrogen was considered unreasonable. Contributing to the shift of this paradigm, we present here the discovery of a new and distinct heavy‐atom QMT reaction. Triplet syn‐2‐formyl‐3‐fluorophenylnitrene, generated in argon matrices by UV‐irradiation of an azide precursor, was found to spontaneously cyclize to singlet 4‐fluoro‐2,1‐benzisoxazole. Monitoring the transformation by IR spectroscopy, temperature‐independent rate constants (k≈1.4×10−3 s−1; half‐life of ≈8 min) were measured from 10 to 20 K. Computational estimated rate constants are in fair agreement with experimental values, providing evidence for a mechanism involving heavy‐atom QMT through crossing triplet to singlet potential energy surfaces. Moreover, the heavy‐atom QMT takes place with considerable displacement of the oxygen atom, which establishes a new limit for the heavier atom involved in a QMT reaction in cryogenic matrices.

     
    more » « less
  2. Abstract

    A series of chlorin‐bacteriochlorin dyads (derived from naturally occurring chlorophyll‐a and bacteriochlorophyll‐a), covalently connected either through themeso‐aryl or β‐pyrrole position (position‐3) via an ester linkage have been synthesized and characterized as a new class of far‐red emitting fluorescence resonance energy transfer (FRET) imaging, and heavy atom‐lacking singlet oxygen‐producing agents. From systematic absorption, fluorescence, electrochemical, and computational studies, the role of chlorin as an energy donor and bacteriochlorin as an energy acceptor in these wide‐band‐capturing dyads was established. Efficiency of FRET evaluated from spectral overlap was found to be 95 and 98 % for themeso‐linked and β‐pyrrole‐linked dyads, respectively. Furthermore, evidence for the occurrence of FRET from singlet‐excited chlorin to bacteriochlorin was secured from studies involving femtosecond transient absorption studies in toluene. The measured FRET rate constants,kFRET, were in the order of 1011 s−1, suggesting the occurrence of ultrafast energy transfer in these dyads. Nanosecond transient absorption studies confirmed relaxation of the energy transfer product,1BChl*, to its triplet state,3Bchl*. The3Bchl* thus generated was capable of producing singlet oxygen with quantum yields comparable to their monomeric entities. The occurrence of efficient FRET emitting in the far‐red region and the ability to produce singlet oxygen make the present series of dyads useful for photonic, imaging and therapy applications.

     
    more » « less
  3. Abstract

    We report the synthesis and photophysical characterization of novel halogenated dipyrrolonaphthyridine‐diones (X2–DPNDs, X = Cl, Br, and I), as candidates for photodynamic therapy (PDT) application. Apart from the heavy atom‐induced spin‐orbit coupling (SOC) dynamics in the investigated X2–DPNDs, it was found that the position of the halogen atom (relative to the nitrogen of the pyrrole ring) also influenced the triplet excited state behavior. Interestingly, the faster/efficiency sensitization of3O2to1O2using X2–DPND correlates with the rate of triplet population,kISC >1.6 × 108s−1for I2–DPNDvs kISC >2.9 × 109s−1for Cl2–DPND and Br2–DPND (whereτISC = 343 ± 3 ps for I2–DPND andτISC = 5–6 ns for Cl2–DPND and Br2–DPND are the lowest time constants/values for ISC). Furthermore, the heavy atom‐induced SOC in Cl2–DPND and Br2–DPND did not lead to a reduction of the corresponding fluorescence (ca75%vs67% for the parent DPND). The attractive photophysical characteristics of Cl2/Br2–DPND put them on the landscape as not only promising PDT agents but also as fluorescence probes. The present study is a stepping stone in the development of novel organic photosystems for synergistic photomedicinal applications.

     
    more » « less
  4. Abstract

    Although alkyl azides are known to typically form imines under direct irradiation, the product formation mechanism remains ambiguous as some alkyl azides also yield the corresponding triplet alkylnitrenes at cryogenic temperatures. The photoreactivity of 3‐azido‐3‐phenyl‐3H‐isobenzofuran‐1‐one (1) was investigated in solution and in cryogenic matrices. Irradiation (λ = 254 nm) of azide 1 in acetonitrile yielded a mixture of imines 2 and 3. Monitoring of the reaction progress using UV‐Vis absorption spectroscopy revealed an isosbestic point at 210 nm, indicating that the reaction proceeded cleanly. Similar results were observed for the photoreactivity of azide 1 in a frozen 2‐methyltetrahydrofuran (mTHF) matrix. Irradiation of azide 1 in an argon matrix at 6 K resulted in the disappearance of its IR bands with the concurrent appearance of IR bands corresponding to imines 2 and 3. Thus, it was theorized that azide 1 forms imines 2 and 3 via a concerted mechanism from its singlet excited state or through singlet alkylnitrene11N, which does not intersystem cross to its triplet configuration. This proposal was supported by CASPT2 calculations on a model system, which suggested that the energy gap between the singlet and triplet configurations of alkylnitrene 1N is 33 kcal/mol, thus making intersystem crossing inefficient.

     
    more » « less
  5. Abstract

    A series ofmeso‐biphenyl linked chlorin and bacteriochlorin dimers, derived from naturally occurring chlorophyll (Chl‐a) and bacteriochlorophyll (BChl‐a) were synthesized in 32 % to 44 % yields and characterized, as photosynthetic antenna mimics, and a new class of singlet oxygen producing agents. The dimers are characterized by absorption, fluorescence, electrochemical, spectroelectrochemical and computational methods to evaluate their physico‐chemical properties, and to identify ground and excited state interactions. Evidence of excited energy exchange among the chromophores in the dimer is derived from femtosecond transient absorption spectral studies. Rate constants for excitation hopping were in the order of 1011 s−1, indicating occurrence of efficient processes. Nanosecond transient absorption studies confirmed relaxation of the singlet excited chlorin and bacteriochlorin dimers to their corresponding triplet states (3Chl* and3Bchl*). As predicted by the established energy level diagrams, both3Chl* and3Bchl* are shown to be capable of producing singlet oxygen with appreciable quantum yields (ϕSO∼0.3).

     
    more » « less