Abstract The ∼1 200 known species in subphylum Saccharomycotina are a highly diverse clade of unicellular fungi. During its lifecycle, a typical yeast exhibits multiple cell types with various morphologies; these morphologies vary across Saccharomycotina species. Here, we synthesize the evolutionary dimensions of variation in cellular morphology of yeasts across the subphylum, focusing on variation in cell shape, cell size, type of budding, and filament production. Examination of 332 representative species across the subphylum revealed that the most common budding cell shapes are ovoid, spherical, and ellipsoidal, and that their average length and width is 5.6 µm and 3.6 µm, respectively. 58.4% of yeast species examined can produce filamentous cells, and 87.3% of species reproduce asexually by multilateral budding, which does not require utilization of cell polarity for mitosis. Interestingly, ∼1.8% of species examined have not been observed to produce budding cells, but rather only produce filaments of septate hyphae and/or pseudohyphae. 76.9% of yeast species examined have sexual cycle descriptions, with most producing one to four ascospores that are most commonly hat-shaped (37.4%). Systematic description of yeast cellular morphological diversity and reconstruction of its evolution promises to enrich our understanding of the evolutionary cell biology of this major fungal lineage.
more »
« less
Comparing Morphological and Molecular Estimates of Species Diversity in the Freshwater Genus Synura (Stramenopiles): A Model for Understanding Diversity of Eukaryotic Microorganisms
- Award ID(s):
- 1725265
- PAR ID:
- 10182280
- Date Published:
- Journal Name:
- Journal of Phycology
- Volume:
- 56
- Issue:
- 3
- ISSN:
- 0022-3646
- Page Range / eLocation ID:
- 574 to 591
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Microcystisis a cyanobacterium that forms toxic blooms in freshwater ecosystems around the world. Biological variation among taxa within the genus is apparent through genetic and phenotypic differences between strains and via the spatial and temporal distribution of strains in the environment, and this fine‐scale diversity exerts strong influence over bloom toxicity. Yet we do not know how varying traits ofMicrocystisstrains govern their environmental distribution, the tradeoffs and links between these traits, or how they are encoded at the genomic level. Here we synthesize current knowledge on the importance of diversity withinMicrocystisand on the genes and traits that likely underpin ecological differentiation of taxa. We briefly review spatial and environmental patterns ofMicrocystisdiversity in the field and genetic evidence for cohesive groups withinMicrocystis. We then compile data on strain‐level diversity regarding growth responses to environmental conditions and explore evidence for variation of community interactions acrossMicrocystisstrains. Potential links and tradeoffs between traits are identified and discussed. The resulting picture, while incomplete, highlights key knowledge gaps that need to be filled to enable new models for predicting strain‐level dynamics, which influence the development, toxicity and cosmopolitan nature ofMicrocystisblooms.more » « less
-
Gilbert, Jack A (Ed.)ABSTRACT The euphotic zone of the surface ocean contains distinct physical-chemical regimes that vary in light and nutrient concentrations as an inverse function of depth. The most numerous phytoplankter of the mid- and low-latitude ocean is the picocyanobacteriumProchlorococcus, which consists of ecologically distinct subpopulations (i.e., “ecotypes”). Ecotypes have different temperature, light, and nutrient optima and display distinct relative abundances along gradients of these niche dimensions. As a primary producer,Prochlorococcusfixes and releases organic carbon to neighboring microbes as part of the microbial loop. However, little is known about the specific moleculesProchlorococcusaccumulates and releases or how these processes vary among its ecotypes. Here, we characterize the metabolite diversity ofProchlorococcusby profiling three ecologically distinct cultured strains: MIT9301, representing a high-light-adapted ecotype dominating shallow tropical and sub-tropical waters; MIT0801, representing a low-light-adapted ecotype found throughout the euphotic zone; and MIT9313, representing a low-light-adapted ecotype relatively most abundant at the base of the euphotic zone. In both intracellular and extracellular metabolite profiles, we observe striking differences across strains in the accumulation and release of molecules, such as the DNA methylating agent S-adenosyl-methionine (intracellular) and the branched-chain amino acids (intracellular) and their precursors (extracellular). While some differences reflect variable genome content across the strains, others likely reflect variable regulation of conserved pathways. In the extracellular profiles, we identify molecules such as pantothenic acid and aromatic amino acids that may serve as currencies inProchlorococcus’ interactions with neighboring microbes and, therefore, merit further investigation. IMPORTANCEApproximately half of the annual carbon fixation on Earth occurs in the surface ocean through the photosynthetic activities of phytoplankton such as the ubiquitous picocyanobacteriumProchlorococcus. Ecologically distinct subpopulations (or ecotypes) ofProchlorococcusare central conduits of organic substrates into the ocean microbiome, thus playing important roles in surface ocean production. We measured the chemical profile of three cultured ecotype strains, observing striking differences among them that have implications for the likely chemical impact ofProchlorococcussubpopulations on their surroundings in the wild. Subpopulations differ in abundance along gradients of temperature, light, and nutrient concentrations, suggesting that these chemical differences could affect carbon cycling in different ocean strata and should be considered in models ofProchlorococcusphysiology and marine carbon dynamics.more » « less
-
Abstract Studies of model organisms have provided important insights into how natural genetic differences shape trait variation. These discoveries are driven by the growing availability of genomes and the expansive experimental toolkits afforded to researchers using these species. For example, Caenorhabditis elegans is increasingly being used to identify and measure the effects of natural genetic variants on traits using quantitative genetics. Since 2016, the C. elegans Natural Diversity Resource (CeNDR) has facilitated many of these studies by providing an archive of wild strains, genome-wide sequence and variant data for each strain, and a genome-wide association (GWA) mapping portal for the C. elegans community. Here, we present an updated platform, the Caenorhabditis Natural Diversity Resource (CaeNDR), that enables quantitative genetics and genomics studies across the three Caenorhabditis species: C. elegans, C. briggsae and C. tropicalis. The CaeNDR platform hosts several databases that are continually updated by the addition of new strains, whole-genome sequence data and annotated variants. Additionally, CaeNDR provides new interactive tools to explore natural variation and enable GWA mappings. All CaeNDR data and tools are accessible through a freely available web portal located at caendr.org.more » « less
-
Abstract The Ranunculales are a hyperdiverse lineage in many aspects of their phenotype, including growth habit, floral and leaf morphology, reproductive mode, and specialized metabolism. Many Ranunculales species, such as opium poppy and goldenseal, have a high medicinal value. In addition, the order includes a large number of commercially important ornamental plants, such as columbines and larkspurs. The phylogenetic position of the order with respect to monocots and core eudicots and the diversity within this lineage make the Ranunculales an excellent group for studying evolutionary processes by comparative studies. Lately, the phylogeny of Ranunculales was revised, and genetic and genomic resources were developed for many species, allowing comparative analyses at the molecular scale. Here, we review the literature on the resources for genetic manipulation and genome sequencing, the recent phylogeny reconstruction of this order, and its fossil record. Further, we explain their habitat range and delve into the diversity in their floral morphology, focusing on perianth organ identity, floral symmetry, occurrences of spurs and nectaries, sexual and pollination systems, and fruit and dehiscence types. The Ranunculales order offers a wealth of opportunities for scientific exploration across various disciplines and scales, to gain novel insights into plant biology for researchers and plant enthusiasts alike.more » « less