skip to main content


Title: Evolutionary Proteomics Reveals Distinct Patterns of Complexity and Divergence between Lepidopteran Sperm Morphs
Abstract Spermatozoa are one of the most strikingly diverse animal cell types. One poorly understood example of this diversity is sperm heteromorphism, where males produce multiple distinct morphs of sperm in a single ejaculate. Typically, only one morph is capable of fertilization and the function of the nonfertilizing morph, called parasperm, remains to be elucidated. Sperm heteromorphism has multiple independent origins, including Lepidoptera (moths and butterflies), where males produce a fertilizing eupyrene sperm and an apyrene parasperm, which lacks a nucleus and nuclear DNA. Here we report a comparative proteomic analysis of eupyrene and apyrene sperm between two distantly related lepidopteran species, the monarch butterfly (Danaus plexippus) and Carolina sphinx moth (Manduca sexta). In both species, we identified ∼700 sperm proteins, with half present in both morphs and the majority of the remainder observed only in eupyrene sperm. Apyrene sperm thus have a distinctly less complex proteome. Gene ontology (GO) analysis revealed proteins shared between morphs tend to be associated with canonical sperm cell structures (e.g., flagellum) and metabolism (e.g., ATP production). GO terms for morph-specific proteins broadly reflect known structural differences, but also suggest a role for apyrene sperm in modulating female neurobiology. Comparative analysis indicates that proteins shared between morphs are most conserved between species as components of sperm, whereas morph-specific proteins turn over more quickly, especially in apyrene sperm. The rapid divergence of apyrene sperm content is consistent with a relaxation of selective constraints associated with fertilization and karyogamy. On the other hand, parasperm generally exhibit greater evolutionary lability, and our observations may therefore reflect adaptive responses to shifting regimes of sexual selection.  more » « less
Award ID(s):
1655840
NSF-PAR ID:
10182356
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Genome Biology and Evolution
Volume:
11
Issue:
7
ISSN:
1759-6653
Page Range / eLocation ID:
1838 to 1846
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Sexual selection can lead to rapid evolution of sexual traits and striking morphological diversity across taxa. In populations where competition for mates is intense, males sometimes evolve distinct behavioral strategies along with morphological differences that help them secure mating opportunities. Strong postcopulatory selection and differential resource allocation across male strategy type can result in strategy‐specific differences in sexual traits, such as sperm morphology, ejaculate components, and testis size. Some polymorphic species also have strategy‐specific genital morphology. Thus far, among vertebrates, this has only been observed in fish. Here, we present the first morphological description of the intromittant copulatory organ, the hemipenis, of the three mating types of the side‐blotched lizard,Uta stansburiana, from a population that exhibits alternative mating strategies. We found that the isometrically scaling hemipenis was shortest in the nonterritorial (yellow) morph that sneaks copulations with other males' mates. Although the hemipenes were generally the same shape across morphs, the usurping territorial (orange) morph had a significantly wider apical horn than the nonterritorial sneaker morph. Sneaker males also had smaller relative body masses than both the mate‐guarding (blue) morph and the usurper morph, and shorter tibia than the usurper morph. This study using a small sample of males suggests that strong sexual selection may drive genital trait differentiation across morphs within populations of terrestrial vertebrates.

     
    more » « less
  2. Abstract

    Sperm are among the most variable cells in nature. Some of this variation results from nonadaptive errors in spermatogenesis, but many species consistently produce multiple sperm morphs, the adaptive significance of which remains unknown. Here, we investigate the evolution of dimorphic sperm in Lepidoptera, the butterflies and moths. Males of this order produce both fertilizing sperm and a secondary, nonfertilizing type that lacks DNA. Previous organismal studies suggested a role for nonfertilizing sperm in sperm competition, but this hypothesis has never been evaluated from a molecular framework. We combined published data sets with new sequencing in two species, the monandrous Carolina sphinx moth and the highly polyandrous monarch butterfly. Based on population genetic analyses, we see evidence for increased adaptive evolution in fertilizing sperm, but only in the polyandrous species. This signal comes primarily from a decrease in nonsynonymous polymorphism in sperm proteins compared to the rest of the genome, suggesting stronger purifying selection, consistent with selection via sperm competition. Nonfertilizing sperm proteins, in contrast, do not show an effect of mating system and do not appear to evolve differently from the background genome in either species, arguing against the involvement of nonfertilizing sperm in direct sperm competition. Based on our results and previous work, we suggest that nonfertilizing sperm may be used to delay female remating in these insects and decrease the risk of sperm competition rather than directly affect its outcome.

     
    more » « less
  3. Abstract

    Sexual signals are often transmitted through multiple modalities (e.g., visual and chemical) and under selection from both intended and unintended receivers. Each component of a multimodal signal may be more or less conspicuous to receivers, and signals may evolve to take advantage of available private channels. We recently documented percussive substrate-borne vibrations in the Pacific field cricket (Teleogryllus oceanicus), a species that uses airborne acoustic and chemical signals to attract and secure mates. The airborne signals of Hawaiian T. oceanicus are currently undergoing rapid evolution; at least five novel male morphs have arisen in the past 20 years. Nothing is yet known about the newly discovered percussive substrate-borne vibrations, so we ask “how” they are produced, “who” produces them (e.g., population, morph), “when” they produce them (e.g., whether they are plastic), and “why” (e.g., do they play a role in mating). We show that the vibrations are produced exclusively by males during courtship via foreleg drumming. One novel morph, purring, produces quieter airborne songs and is more likely to drum than the ancestral morph. However, drumming behavior is also contextually plastic for some males; when we removed the ability of males to produce airborne song, ancestral males became more likely to drum, whereas two novel morphs were equally likely to drum regardless of their ability to produce song. Opposite our prediction, females were less likely to mate with males who drummed. We discuss why that might be and describe what we can learn about complex signal evolution from this newly discovered behavior.

     
    more » « less
  4. Jennions, Michael D (Ed.)
    Abstract Sexual selection can contribute to speciation when signals and preferences expressed during mate choice are coupled within groups, but come to differ across groups (generating assortative mating). When new sexual signals evolve, it is important to investigate their roles in both mate location and courtship contexts, as both signaling functions are critical in mate choice. In previous work, researchers identified two new male morphs (silent and purring) in Hawaiian populations of the Pacific field cricket, Teleogryllus oceanicus. These morphs likely evolved because they protect males from an acoustically orienting parasitoid, yet still obtain some reproductive success. But, it remains unknown how the purring morph functions in close courtship encounters. We compared the relative success of the very recently evolved purring morph to that of the ancestral and silent morphs during courtship encounters. Purring males produce a novel courtship song and were not as successful in courtship as the ancestral type, but were mounted by females as often and as quickly as the obligately silent morph that arose and spread ~20 years ago. Purring males initiate courtship more quickly than other morphs, and females from populations where purring is common exhibit higher overall mounting rates. Thus, differences in the behavior of purring males and of females from populations where purring is common may have facilitated the origin of this novel sexual signal. We found no assortative mating between males of a given morph and females from their own population, and so we hypothesize that multiple male types will be maintained within the species because each achieves fitness in different ways. 
    more » « less
  5. Interactions between sperm and the female reproductive tract (FRT) are critical to reproductive success and yet are poorly understood. Because sperm complete their functional maturation within the FRT, the life history of sperm is likely to include a molecular “hand-off” from males to females. Although such intersexual molecular continuity is likely to be widespread among all internally fertilizing species, the identity and extent of female contributions are largely unknown. We combined semiquantitative proteomics with sex-specific isotopic labeling to catalog the posttesticular life history of the sperm proteome and determine the extent of molecular continuity between male and FRTs. We show that the Drosophila melanogaster sperm proteome undergoes substantial compositional changes after being transferred to the FRT. Multiple seminal fluid proteins initially associate with sperm, but most become undetectable after sperm are stored. Female-derived proteins also begin to associate with sperm immediately after mating, and they comprise nearly 20% of the postmating sperm proteome following 4 d of storage in the FRT. Female-derived proteins that associate with sperm are enriched for processes associated with energy metabolism, suggesting that female contributions support sperm viability during the prolonged period between copulation and fertilization. Our research provides a comprehensive characterization of sperm proteome dynamics and expands our understanding of the critical process of sperm–FRT interactions. 
    more » « less