skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Halobacterium bonnevillei sp. nov., Halobaculum saliterrae sp. nov. and Halovenus carboxidivorans sp. nov., three novel carbon monoxide-oxidizing Halobacteria from saline crusts and soils
Three novel carbon monoxide-oxidizing Halobacteria were isolated from Bonneville Salt Flats (Utah, USA) salt crusts and nearby saline soils. Phylogenetic analysis of 16S rRNA gene sequences revealed that strains PCN9 T , WSA2 T and WSH3 T belong to the genera Halobacterium , Halobaculum and Halovenus , respectively. Strains PCN9 T , WSA2 T and WSH3 T grew optimally at 40 °C (PCN9 T ) or 50 °C (WSA2 T , WSH3 T ). NaCl optima were 3 M (PCN9 T , WSA2 T ) or 4 M NaCl (WSH3 T ). Carbon monoxide was oxidized by all isolates, each of which contained a molybdenum-dependent CO dehydrogenase. G+C contents for the three respective isolates were 66.75, 67.62, and 63.97 mol% as derived from genome analyses. The closest phylogenetic relatives for PCN9 T , WSA2 T and WSH3 T were Halobacterium noricense A1 T , Halobaculum roseum D90 T and Halovenus aranensis EB27 T with 98.71, 98.19 and 95.95 % 16S rRNA gene sequence similarities, respectively. Genome comparisons of PCN9 T with Halobacterium noricense A1 T yielded an average nucleotide identity (ANI) of 82.0% and a digital DNA–DNA hybridization (dDDH) value of 25.7 %; comparisons of WSA2 T with Halobaculum roseum D90 T yielded ANI and dDDH values of 86.34 and 31.1 %, respectively. The ANI value for a comparison of WSH3 T with Halovenus aranensis EB27 T was 75.2 %. Physiological, biochemical, genetic and genomic characteristics of PCN9 T , WSA2 T and WSH3 T differentiated them from their closest phylogenetic neighbours and indicated that they represent novel species for which the names Halobaculum bonnevillei , Halobaculum saliterrae and Halovenus carboxidivorans are proposed, respectively. The type strains are PCN9 T (=JCM 32472=LMG 31022=ATCC TSD-126), WSA2 T (=JCM 32473=ATCC TSD-127) and WSH3 T (=JCM 32474=ATCC TSD-128).  more » « less
Award ID(s):
1634239
PAR ID:
10182672
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Journal of Systematic and Evolutionary Microbiology
Volume:
70
Issue:
7
ISSN:
1466-5026
Page Range / eLocation ID:
4261 to 4268
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Two sulphur-oxidizing, chemolithoautotrophic aerobes were isolated from the chemocline of an anchialine sinkhole located within the Weeki Wachee River of Florida. Gram-stain-negative cells of both strains were motile, chemotactic rods. Phylogenetic analysis of the 16S rRNA gene and predicted amino acid sequences of ribosomal proteins, average nucleotide identities, and alignment fractions suggest the strains HH1 T and HH3 T represent novel species belonging to the genus Thiomicrorhabdus . The genome G+C fraction of HH1 T is 47.8 mol% with a genome length of 2.61 Mb, whereas HH3 T has a G+C fraction of 52.4 mol% and 2.49 Mb genome length. Major fatty acids of the two strains included C 16 : 1 , C 18 : 1 and C 16 : 0 , with the addition of C 10:0 3-OH in HH1 T and C 12 : 0 in HH3 T . Chemolithoautotrophic growth of both strains was supported by elemental sulphur, sulphide, tetrathionate, and thiosulphate, and HH1 T was also able to use molecular hydrogen. Neither strain was capable of heterotrophic growth or use of nitrate as a terminal electron acceptor. Strain HH1 T grew from pH 6.5 to 8.5, with an optimum of pH 7.4, whereas strain HH3 T grew from pH 6 to 8 with an optimum of pH 7.5. Growth was observed between 15–35 °C with optima of 32.8 °C for HH1 T and 32 °C for HH3 T . HH1 T grew in media with [NaCl] 80–689 mM, with an optimum of 400 mM, while HH3 T grew at 80–517 mM, with an optimum of 80 mM. The name Thiomicrorhabdus heinhorstiae sp. nov. is proposed, and the type strain is HH1 T (=DSM 111584 T =ATCC TSD-240 T ). The name Thiomicrorhabdus cannonii sp. nov is proposed, and the type strain is HH3 T (=DSM 111593 T =ATCC TSD-241 T ). 
    more » « less
  2. A Gram-stain-negative, strictly anaerobic, non-motile, rod-shaped bacterium, designated SFB93T, was isolated from the intertidal sediments of South San Francisco Bay, located near Palo Alto, CA, USA. SFB93Twas capable of acetylenotrophic and diazotrophic growth, grew at 22–37 °C, pH 6.3–8.5 and in the presence of 10–45 g l−1NaCl. Phylogenetic analyses based on 16S rRNA gene sequencing showed that SFB93Trepresented a member of the genusSyntrophotaleawith highest 16S rRNA gene sequence similarities toSyntrophotalea acetylenicaDSM 3246T(96.6 %),Syntrophotalea carbinolicaDSM 2380T(96.5 %), andSyntrophotalea venetianaDSM 2394T(96.7 %). Genome sequencing revealed a genome size of 3.22 Mbp and a DNA G+C content of 53.4 %. SFB93Thad low genome-wide average nucleotide identity (81–87.5 %) and <70 % digital DNA–DNA hybridization value with other members of the genusSyntrophotalea. The phylogenetic position of SFB93Twithin the familySyntrophotaleaceaeand as a novel member of the genusSyntrophotaleawas confirmed via phylogenetic reconstruction based on concatenated alignments of 92 bacterial core genes. On the basis of the results of phenotypic, genotypic and phylogenetic analyses, a novel species,Syntrophotalea acetylenivoranssp. nov., is proposed, with SFB93T(=DSM 106009T=JCM 33327T=ATCC TSD-118T) as the type strain. 
    more » « less
  3. null (Ed.)
    A detailed evaluation of eight bacterial isolates from floral nectar and animal visitors to flowers shows evidence that they represent three novel species in the genus Acinetobacter . Phylogenomic analysis shows the closest relatives of these new isolates are Acinetobacter apis , Acinetobacter boissieri and Acinetobacter nectaris , previously described species associated with floral nectar and bees, but high genome-wide sequence divergence defines these isolates as novel species. Pairwise comparisons of the average nucleotide identity of the new isolates compared to known species is extremely low (<83 %), thus confirming that these samples are representative of three novel Acinetobacter species, for which the names Acinetobacter pollinis sp. nov., Acinetobacter baretiae sp. nov. and Acinetobacter rathckeae sp. nov. are proposed. The respective type strains are SCC477 T (=TSD-214 T =LMG 31655 T ), B10A T (=TSD-213 T =LMG 31702 T ) and EC24 T (=TSD-215 T =LMG 31703 T =DSM 111781 T ). 
    more » « less
  4. The anaerobic gut fungi (AGF,Neocallimastigomycota) represent a basal zoosporic phylum within the kingdomFungi. Twenty genera are currently described, all of which were isolated from the digestive tracts of mammalian herbivores. Here, we report on the isolation and characterization of novel AGF taxa from faecal samples of tortoises. Twenty-nine fungal isolates were obtained from seven different tortoise species. Phylogenetic analysis using the D1/D2 region of the LSU rRNA gene, ribosomal internal transcribed spacer 1, and RNA polymerase II large subunit grouped all isolates into two distinct, deep-branching clades (clades T and B), with a high level of sequence divergence to their closest cultured relative (Khoyollomyces ramosus). Average amino acid identity values calculated using predicted peptides from the isolates’ transcriptomes ranged between 60.80–66.21  % (clade T), and 61.24–64.83  % (clade B) when compared to all other AGF taxa; values that are significantly below recently recommended thresholds for genus (85%) and family (75%) delineation in theNeocallimastigomycota. Both clades displayed a broader temperature growth range (20–45 °C, optimal 30 °C for clade T, and 30–42 °C, optimal 39 °C for clade B) compared to all other AGF taxa. Microscopic analysis demonstrated that strains from both clades produced filamentous hyphae, polycentric rhizoidal growth patterns, and monoflagellated zoospores. Isolates in clade T were characterized by the production of unbranched, predominantly narrow hyphae, and small zoospores, while isolates in clade B were characterized by the production of multiple sporangiophores and sporangia originating from a single central swelling resulting in large multi-sporangiated structures. Based on the unique phylogenetic positions, AAI values, and phenotypic characteristics, we propose to accommodate these isolates into two novel genera (TestudinimycesandAstrotestudinimyces), and species (T. gracilisandA. divisus) within the orderNeocallimastigales. The type species are strains T130AT(T. gracilis) and B1.1T(A. divisus). 
    more » « less
  5. Background Cellulolytic, hemicellulolytic, and amylolytic (CHA) enzyme-producing halophiles are understudied. The recently defined taxon Iocasia fonsfrigidae consists of one well-described anaerobic bacterial strain: NS-1 T . Prior to characterization of strain NS-1 T , an isolate designated Halocella sp. SP3-1 was isolated and its genome was published. Based on physiological and genetic comparisons, it was suggested that Halocella sp. SP3-1 may be another isolate of I. fronsfrigidae . Despite being geographic variants of the same species, data indicate that strain SP3-1 exhibits genetic, genomic, and physiological characteristics that distinguish it from strain NS-1 T . In this study, we examine the halophilic and alkaliphilic nature of strain SP3-1 and the genetic substrates underlying phenotypic differences between strains SP3-1 and NS-1 T with focus on sugar metabolism and CHA enzyme expression. Methods Standard methods in anaerobic cell culture were used to grow strains SP3-1 as well as other comparator species. Morphological characterization was done via electron microscopy and Schaeffer-Fulton staining. Data for sequence comparisons ( e.g. , 16S rRNA) were retrieved via BLAST and EzBioCloud. Alignments and phylogenetic trees were generated via CLUTAL_X and neighbor joining functions in MEGA (version 11). Genomes were assembled/annotated via the Prokka annotation pipeline. Clusters of Orthologous Groups (COGs) were defined by eegNOG 4.5. DNA-DNA hybridization calculations were performed by the ANI Calculator web service. Results Cells of strain SP3-1 are rods. SP3-1 cells grow at NaCl concentrations of 5-30% (w/v). Optimal growth occurs at 37 °C, pH 8.0, and 20% NaCl (w/v). Although phylogenetic analysis based on 16S rRNA gene indicates that strain SP3-1 belongs to the genus Iocasia with 99.58% average nucleotide sequence identity to Iocasia fonsfrigida NS-1 T , strain SP3-1 is uniquely an extreme haloalkaliphile. Moreover, strain SP3-1 ferments D-glucose to acetate, butyrate, carbon dioxide, hydrogen, ethanol, and butanol and will grow on L-arabinose, D-fructose, D-galactose, D-glucose, D-mannose, D-raffinose, D-xylose, cellobiose, lactose, maltose, sucrose, starch, xylan and phosphoric acid swollen cellulose (PASC). D-rhamnose, alginate, and lignin do not serve as suitable culture substrates for strain SP3-1. Thus, the carbon utilization profile of strain SP3-1 differs from that of I. fronsfrigidae strain NS-1 T . Differences between these two strains are also noted in their lipid composition. Genomic data reveal key differences between the genetic profiles of strain SP3-1 and NS-1 T that likely account for differences in morphology, sugar metabolism, and CHA-enzyme potential. Important to this study, I. fonsfrigidae SP3-1 produces and extracellularly secretes CHA enzymes at different levels and composition than type strain NS-1 T . The high salt tolerance and pH range of SP3-1 makes it an ideal candidate for salt and pH tolerant enzyme discovery. 
    more » « less