skip to main content

Title: Kīlauea lava fuels phytoplankton bloom in the North Pacific Ocean
From June to August 2018, the eruption of Kīlauea volcano on the island of Hawai‘i injected millions of cubic meters of molten lava into the nutrient-poor waters of the North Pacific Subtropical Gyre. The lava-impacted seawater was characterized by high concentrations of metals and nutrients that stimulated phytoplankton growth, resulting in an extensive plume of chlorophyll a that was detectable by satellite. Chemical and molecular evidence revealed that this biological response hinged on unexpectedly high concentrations of nitrate, despite the negligible quantities of nitrogen in basaltic lava. We hypothesize that the high nitrate was caused by buoyant plumes of nutrient-rich deep waters created by the substantial input of lava into the ocean. This large-scale ocean fertilization was therefore a unique perturbation event that revealed how marine ecosystems respond to exogenous inputs of nutrients.
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
1842012
Publication Date:
NSF-PAR ID:
10182707
Journal Name:
Science
Volume:
365
Issue:
6457
Page Range or eLocation-ID:
1040 to 1044
ISSN:
0036-8075
Sponsoring Org:
National Science Foundation
More Like this
  1. Martiny, Jennifer B. (Ed.)
    ABSTRACT The marine cyanobacterium Prochlorococcus numerically dominates the phytoplankton community of the nutrient-limited open ocean, establishing itself as the most abundant photosynthetic organism on Earth. This ecological success has been attributed to lower cell quotas for limiting nutrients, superior resource acquisition, and other advantages associated with cell size reduction and genome streamlining. In this study, we tested the prediction that Prochlorococcus outcompetes its rivals for scarce nutrients and that this advantage leads to its numerical success in nutrient-limited waters. Strains of Prochlorococcus and its sister genus Synechococcus grew well in both mono- and cocultures when nutrients were replete. However, in nitrogen-limited medium, Prochlorococcus outgrew Synechococcus but only when heterotrophic bacteria were also present. In the nitrogen-limited medium, the heterotroph Alteromonas macleodii outcompeted Synechococcus for nitrogen but only if stimulated by the exudate released by Prochlorococcus or if a proxy organic carbon source was provided. Genetic analysis of Alteromonas suggested that it outcompetes Synechococcus for nitrate and/or nitrite, during which cocultured Prochlorococcus grows on ammonia or other available nitrogen species. We propose that Prochlorococcus can stimulate antagonism between heterotrophic bacteria and potential phytoplankton competitors through a metabolic cross-feeding interaction, and this stimulation could contribute to the numerical success of Prochlorococcus inmore »nutrient-limited regions of the ocean. IMPORTANCE In nutrient-poor habitats, competition for limited resources is thought to select for organisms with an enhanced ability to scavenge nutrients and utilize them efficiently. Such adaptations characterize the cyanobacterium Prochlorococcus , the most abundant photosynthetic organism in the nutrient-limited open ocean. In this study, the competitive superiority of Prochlorococcus over a rival cyanobacterium, Synechococcus , was captured in laboratory culture. Critically, this outcome was achieved only when key aspects of the open ocean were simulated: a limited supply of nitrogen and the presence of heterotrophic bacteria. The results indicate that Prochlorococcus promotes its numerical dominance over Synechococcus by energizing the heterotroph’s ability to outcompete Synechococcus for available nitrogen. This study demonstrates how interactions between trophic groups can influence interactions within trophic groups and how these interactions likely contribute to the success of the most abundant photosynthetic microorganism.« less
  2. Huber, Julie A. (Ed.)
    ABSTRACT Wind-driven upwelling followed by relaxation results in cycles of cold nutrient-rich water fueling intense phytoplankton blooms followed by nutrient depletion, bloom decline, and sinking of cells. Surviving cells at depth can then be vertically transported back to the surface with upwelled waters to seed another bloom. As a result of these cycles, phytoplankton communities in upwelling regions are transported through a wide range of light and nutrient conditions. Diatoms appear to be well suited for these cycles, but their responses to them remain understudied. To investigate the bases for diatoms’ ecological success in upwelling environments, we employed laboratory simulations of a complete upwelling cycle with a common diatom, Chaetoceros decipiens , and coccolithophore, Emiliania huxleyi . We show that while both organisms exhibited physiological and transcriptomic plasticity, the diatom displayed a distinct response enabling it to rapidly shift-up growth rates and nitrate assimilation when returned to light and available nutrients following dark nutrient-deplete conditions. As observed in natural diatom communities, C. decipiens highly expresses before upwelling, or frontloads, key transcriptional and nitrate assimilation genes, coordinating its rapid response to upwelling conditions. Low-iron simulations showed that C. decipiens is capable of maintaining this response when iron is limiting to growth,more »whereas E. huxleyi is not. Differential expression between iron treatments further revealed specific genes used by each organism under low iron availability. Overall, these results highlight the responses of two dominant phytoplankton groups to upwelling cycles, providing insight into the mechanisms fueling diatom blooms during upwelling events. IMPORTANCE Coastal upwelling regions are among the most biologically productive ecosystems. During upwelling events, nutrient-rich water is delivered from depth resulting in intense phytoplankton blooms typically dominated by diatoms. Along with nutrients, phytoplankton may also be transported from depth to seed these blooms then return to depth as upwelling subsides creating a cycle with varied conditions. To investigate diatoms’ success in upwelling regions, we compare the responses of a common diatom and coccolithophore throughout simulated upwelling cycles under iron-replete and iron-limiting conditions. The diatom exhibited a distinct rapid response to upwelling irrespective of iron status, whereas the coccolithophore’s response was either delayed or suppressed depending on iron availability. Concurrently, the diatom highly expresses, or frontloads, nitrate assimilation genes prior to upwelling, potentially enabling this rapid response. These results provide insight into the molecular mechanisms underlying diatom blooms and ecological success in upwelling regions.« less
  3. Nitrogen and phosphorus contained in stormwater runoff contaminate both surface and groundwaters, causing problems for natural aquatic systems and human health. Pervious concrete specifically designed for pollutant removal, otherwise known as permeable reactive concrete (PRC), may be used as a novel component of existing infrastructure to remove nutrients from runoff. This research compares the removal and retention of dissolved, inorganic nitrate-nitrogen (NO3-N) and orthophosphate-phosphorus (PO4-P) for three PRC mixtures. The control PRC was ordinary portland cement (OPC) and was compared against other mixtures containing 25% replacement with Class C fly ash or with drinking water treatment residual waste (DWTR). Concrete specimens were jar-tested for 72 h in three different concentrations of nitrate or phosphate. The control mixture removed 60% of NO3-N and more than 80% PO4-P, and the fly ash mixture removed up to 39% of NO3-N and more than 91% PO4-P. The DWTR mixture leached NO3-N while removing more than 80% PO4-P. Linear isotherms were determined for the range of nutrient concentrations tested. Column leach tests were conducted on specimens after initial jar testing and used as an indication of removal permanence. Inorganic removal mechanisms were investigated, including crystallographic substitution, adsorption, and physical solute filtering in cement pore space.more »Results indicate PRC can be one of the leading methods to remove nitrate from surface waters and is as efficient as other methods for orthophosphate removal.« less
  4. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  5. Moisander, Pia (Ed.)
    Abstract The availability of nitrogen (N) in ocean surface waters affects rates of photosynthesis and marine ecosystem structure. In spite of low dissolved inorganic N concentrations, export production in oligotrophic waters is comparable to more nutrient replete regions. Prior observations raise the possibility that di-nitrogen (N2) fixation supplies a significant fraction of N supporting export production in the Gulf of Mexico. In this study, geochemical tools were used to quantify the relative and absolute importance of both subsurface nitrate and N2 fixation as sources of new N fueling export production in the oligotrophic Gulf of Mexico in May 2017 and May 2018. Comparing the isotopic composition (“δ15N”) of nitrate with the δ15N of sinking particulate N collected during five sediment trap deployments each lasting two to four days indicates that N2 fixation is typically not detected and that the majority (≥80%) of export production is supported by subsurface nitrate. Moreover, no gradients in upper ocean dissolved organic N and suspended particulate N concentration and/or δ15N were found that would indicate significant N2 fixation fluxes accumulated in these pools, consistent with low Trichodesmium spp. abundance. Finally, comparing the δ15N of sinking particulate N captured within vs. below the euphotic zone indicatesmore »that during late spring regenerated N is low in δ15N compared to sinking N.« less