skip to main content


Title: Optical and electrical properties of Ti-doped β-Ga 2 O 3 (Ti 3+ :β-Ga 2 O 3 ) bulk crystals grown by floating zone method
NSF-PAR ID:
10182931
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics D: Applied Physics
Volume:
53
Issue:
44
ISSN:
0022-3727
Page Range / eLocation ID:
Article No. 444001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The energy and beam current dependence of Ga+focused ion beam milling damage on the sidewall of vertical rectifiers fabricated on n-type Ga2O3was investigated with 5–30 kV ions and beam currents from 1.3–20 nA. The sidewall damage was introduced by etching a mesa along one edge of existing Ga2O3rectifiers. We employed on-state resistance, forward and reverse leakage current, Schottky barrier height, and diode ideality factor from the vertical rectifiers as potential measures of the extent of the ion-induced sidewall damage. Rectifiers of different diameters were exposed to the ion beams and the “zero-area” parameters extracted by extrapolating to zero area and normalizing for milling depth. Forward currents degraded with exposure to any of our beam conductions, while reverse current was unaffected. On-state resistance was found to be most sensitive of the device parameters to Ga+beam energy and current. Beam current was the most important parameter in creating sidewall damage. Use of subsequent lower beam energies and currents after an initial 30 kV mill sequence was able to reduce residual damage effects but not to the point of initial lower beam current exposures.

     
    more » « less
  2. Abstract β -Ga 2 O 3 metal–semiconductor field-effect transistors are realized with superior reverse breakdown voltages ( V BR ) and ON currents ( I DMAX ). A sandwiched SiN x dielectric field plate design is utilized that prevents etching-related damage in the active region and a deep mesa-etching was used to reduce reverse leakage. The device with L GD = 34.5 μ m exhibits an I DMAX of 56 mA mm −1 , a high I ON / I OFF ratio >10 8 and a very low reverse leakage until catastrophic breakdown at ∼4.4 kV. A power figure of merit (PFOM) of 132 MW cm −2 was calculated for a V BR of ∼4.4 kV. The reported results are the first >4 kV class Ga 2 O 3 transistors to surpass the theoretical unipolar FOM of silicon. 
    more » « less
  3. null (Ed.)