skip to main content


Title: You Can’t Always Get What You Want: The Impact of Prior Assumptions on Interpreting GW190412
Award ID(s):
1912648 1726951
NSF-PAR ID:
10182968
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
899
Issue:
1
ISSN:
2041-8213
Page Range / eLocation ID:
L17
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. https://futurumcareers.com/can-you-trust-what-you-see-online 
    more » « less
  2. Abstract GitLab is a software company that works “all remote” at the scale of more than 1000 employees located in more than 60 countries. GitLab has no physical office and its employees can work from anywhere they choose. Any step of the organizational life of a GitLab employee (e.g., hiring, onboarding and firing) is performed remotely, except for a yearly companywide gathering. GitLab strongly relies on asynchronous coordination, allowing employees to work anytime they want. After highlighting some of the main practices implemented by GitLab to effectively work all remotely and asynchronously, I asked renowned organizational scientists their thoughts on this interesting case and to question the generalizability of the all remote asynchronous model. Understanding whether and under what conditions this model can succeed can be of guidance for organizational designers that are now considering different remote models in response of the COVID-19 shock and its aftermath. 
    more » « less
  3. Several branches of the potential outcome causal inference literature have discussed the merits of blocking versus complete randomization. Some have concluded it can never hurt the precision of estimates, and some have concluded it can hurt. In this article, we reconcile these apparently conflicting views, give a more thorough discussion of what guarantees no harm, and discuss how other aspects of a blocked design can cost, all in terms of estimator precision. We discuss how the different findings are due to different sampling models and assumptions of how the blocks were formed. We also connect these ideas to common misconceptions; for instance, we show that analyzing a blocked experiment as if it were completely randomized, a seemingly conservative method, can actually backfire in some cases. Overall, we find that blocking can have a price but that this price is usually small and the potential for gain can be large. It is hard to go too far wrong with blocking.

     
    more » « less
  4. In recent years, a range of online applications have facilitated resource sharing among users, resulting in a significant increase in resource utilization. In all such applications, sharing one’s resources or skills with other agents increases social welfare. In general, each agent will look for other agents whose available resources complement hers, thereby forming natural sharing groups. In this paper, we study settings where a large population self-organizes into sharing groups. In many cases, centralized optimization approaches for creating an optimal partition of the user population are infeasible because either the central authority does not have the necessary information to compute an optimal partition, or it does not have the power to enforce a partition. Instead, the central authority puts in place an incentive structure in the form of a utility sharing method, before letting the participants form the sharing groups by themselves. We first analyze a simple equal-sharing method, which is the one most typically encountered in practice and show that it can lead to highly inefficient equilibria. We then propose a Shapley-sharing method and show that it significantly improves overall social welfare. 
    more » « less
  5. null (Ed.)