Abstract The large scale control over thousands of quantum emitters desired by quantum network technology is limited by the power consumption and cross-talk inherent in current microwave techniques. Here we propose a quantum repeater architecture based on densely-packed diamond color centers (CCs) in a programmable electrode array, with quantum gates driven by electric or strain fields. This ‘field programmable spin array’ (FPSA) enables high-speed spin control of individual CCs with low cross-talk and power dissipation. Integrated in a slow-light waveguide for efficient optical coupling, the FPSA serves as a quantum interface for optically-mediated entanglement. We evaluate the performance of the FPSA architecture in comparison to a routing-tree design and show an increased entanglement generation rate scaling into the thousand-qubit regime. Our results enable high fidelity control of dense quantum emitter arrays for scalable networking.
more »
« less
Baldur: A Power-Efficient and Scalable Network Using All-Optical Switches
We present the first all-optical network, Baldur, to enable power-efficient and high-speed communications in future exascale computing systems. The essence of Baldur is its ability to perform packet routing on-the-fly in the optical domain using an emerging technology called the transistor laser (TL), which presents interesting opportunities and challenges at the system level. Optical packet switching readily eliminates many inefficiencies associated with the crossings between optical and electrical domains. However, TL gates consume high power at the current technology node, which makes TL-based buffering and optical clock recovery impractical. Consequently, we must adopt novel (bufferless and clock-less) architecture and design approaches that are substantially different from those used in current networks. At the architecture level, we support a bufferless design by turning to techniques that have fallen out of favor for current networks. Baldur uses a low-radix, multi-stage network with a simple routing algorithm that drops packets to handle congestion, and we further incorporate path multiplicity and randomness to minimize packet drops. This design also minimizes the number of TL gates needed in each switch. At the logic design level, a non-conventional, length-based data encoding scheme is used to eliminate the need for clock recovery. We thoroughly validate and evaluate Baldur using a circuit simulator and a network simulator. Our results show that Baldur achieves up to 3,000X lower average latency while consuming 3.2X-26.4X less power than various state-of-the art networks under a wide variety of traffic patterns and real workloads, for the scale of 1,024 server nodes. Baldur is also highly scalable, since its power per node stays relatively constant as we increase the network size to over 1 million server nodes, which corresponds to 14.6X-31.0X power improvements compared to state-of-the-art networks at this scale.
more »
« less
- PAR ID:
- 10182969
- Date Published:
- Journal Name:
- 2020 IEEE Symposium on High Performance Computer Architecture (HPCA)
- Page Range / eLocation ID:
- 153 to 166
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
While significant efforts have been attempted in the design, control, and optimization of complex networks, most existing works assume the network structure is known or readily available. However, the network topology can be radically recast after an adversarial attack and may remain unknown for subsequent analysis. In this work, we propose a novel Bayesian sequential learning approach to reconstruct network connectivity adaptively: A sparse Spike and Slab prior is placed on connectivity for all edges, and the connectivity learned from reconstructed nodes will be used to select the next node and update the prior knowledge. Central to our approach is that most realistic networks are sparse, in that the connectivity degree of each node is much smaller compared to the number of nodes in the network. Sequential selection of the most informative nodes is realized via the between-node expected improvement. We corroborate this sequential Bayesian approach in connectivity recovery for a synthetic ultimatum game network and the IEEE-118 power grid system. Results indicate that only a fraction (∼50%) of the nodes need to be interrogated to reveal the network topology.more » « less
-
Neural ordinary differential equations (NODEs) -- parametrizations of differential equations using neural networks -- have shown tremendous promise in learning models of unknown continuous-time dynamical systems from data. However, every forward evaluation of a NODE requires numerical integration of the neural network used to capture the system dynamics, making their training prohibitively expensive. Existing works rely on off-the-shelf adaptive step-size numerical integration schemes, which often require an excessive number of evaluations of the underlying dynamics network to obtain sufficient accuracy for training. By contrast, we accelerate the evaluation and the training of NODEs by proposing a data-driven approach to their numerical integration. The proposed Taylor-Lagrange NODEs (TL-NODEs) use a fixed-order Taylor expansion for numerical integration, while also learning to estimate the expansion's approximation error. As a result, the proposed approach achieves the same accuracy as adaptive step-size schemes while employing only low-order Taylor expansions, thus greatly reducing the computational cost necessary to integrate the NODE. A suite of numerical experiments, including modeling dynamical systems, image classification, and density estimation, demonstrate that TL-NODEs can be trained more than an order of magnitude faster than state-of-the-art approaches, without any loss in performance.more » « less
-
We describe a general design for a compact frequency comb-based optical time transfer and ranging node with a volume of 14L, a mass of 10 kg, and a power consumption of 46 W. We assess the residual noise from the comb-based system by making both ranging and time transfer measurements using these compact nodes over a 4.4 km free-space testbed. We demonstrate that this node design has the potential to support sub-femtosecond clock comparisons and sub-micron range measurements at averaging intervals of 1 s with a mean received power of 20 nW. This is more than sufficient to support future space-based distributed coherent sensing at observing frequencies beyond 1 THz.more » « less