We report the temperature dependence of the Yb valence in the geometrically frustrated compound
Motivated by recent experiments on magnetically frustrated heavy fermion metals, we theoretically study the phase diagram of the Kondo lattice model with a nonmagnetic valence bond solid ground state on a ladder. A similar physical setting may be naturally occurring in
 NSFPAR ID:
 10183068
 Publisher / Repository:
 Proceedings of the National Academy of Sciences
 Date Published:
 Journal Name:
 Proceedings of the National Academy of Sciences
 Volume:
 117
 Issue:
 34
 ISSN:
 00278424
 Page Range / eLocation ID:
 p. 2046220467
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract from 12 to 300 K using resonant xray emission spectroscopy at the Yb ${\mathrm{Y}\mathrm{b}\mathrm{B}}_{4}$ transition. We find that the Yb valence, ${L}_{{\alpha}_{1}}$v , is hybridized between thev = 2 andv = 3 valence states, increasing from at 12 K to $v=2.61\pm 0.01$ at 300 K, confirming that $v=2.67\pm 0.01$ is a Kondo system in the intermediate valence regime. This result indicates that the Kondo interaction in ${\mathrm{Y}\mathrm{b}\mathrm{B}}_{4}$ is substantial, and is likely to be the reason why ${\mathrm{Y}\mathrm{b}\mathrm{B}}_{4}$ does not order magnetically at low temperature, rather than this being an effect of geometric frustration. Furthermore, the zeropoint valence of the system is extracted from our data and compared with other Kondo lattice systems. The zeropoint valence seems to be weakly dependent on the Kondo temperature scale, but not on the valence change temperature scale ${\mathrm{Y}\mathrm{b}\mathrm{B}}_{4}$T _{v}. 
Abstract The best upper limit for the electron electric dipole moment was recently set by the ACME collaboration. This experiment measures an electron spinprecession in a cold beam of ThO molecules in their metastable
state. Improvement in the statistical and systematic uncertainties is possible with more efficient use of molecules from the source and better magnetometry in the experiment, respectively. Here, we report measurements of several relevant properties of the longlived $H\phantom{\rule{0.50em}{0ex}}{(}^{3}{\mathrm{\Delta}}_{1})$ state of ThO, and show that this state is a very useful resource for both these purposes. The $Q\phantom{\rule{0.50em}{0ex}}{(}^{3}{\mathrm{\Delta}}_{2})$Q state lifetime is long enough that its decay during the time of flight in the ACME beam experiment is negligible. The large electric dipole moment measured for theQ state, giving rise to a large linear Stark shift, is ideal for an electrostatic lens that increases the fraction of molecules detected downstream. The measured magnetic moment of theQ state is also large enough to be used as a sensitive comagnetometer in ACME. Finally, we show that theQ state has a large transition dipole moment to the state, which allows for efficient population transfer between the ground state $C\phantom{\rule{0.50em}{0ex}}{(}^{1}{\mathrm{\Pi}}_{1})$ and the $X\phantom{\rule{0.50em}{0ex}}{(}^{1}{\mathrm{\Sigma}}^{+})$Q state via Stimulated Raman Adiabatic Passage (STIRAP). We demonstrate 90 % STIRAP transfer efficiency. In the course of these measurements, we also determine the magnetic moment of $XCQ$C state, the transition dipole moment, and branching ratios of decays from the $X\to C$C state. 
Abstract Broken symmetries in topological condensed matter systems have implications for the spectrum of Fermionic excitations confined on surfaces or topological defects. The Fermionic spectrum of confined (quasi2D)^{3}HeA consists of branches of chiral edge states. The negative energy states are related to the groundstate angular momentum,
, for ${L}_{z}=(N/2)\hslash $ Cooper pairs. The power law suppression of the angular momentum, $N/2$ for ${L}_{z}(T)\simeq (N/2)\hslash [1\frac{2}{3}(\pi T/\mathrm{\Delta}{)}^{2}]$ , in the fully gapped 2D chiral Aphase reflects the thermal excitation of the chiral edge Fermions. We discuss the effects of wave function overlap, and hybridization between edge states confined near opposing edge boundaries on the edge currents, groundstate angular momentum and groundstate order parameter of superfluid^{3}He thin films. Under strong lateral confinement, the chiral A phase undergoes a sequence of phase transitions, first to a pair density wave (PDW) phase with broken translational symmetry at $0\u2a7dT\ll {T}_{c}$ . The PDW phase is described by a periodic array of chiral domains with alternating chirality, separated by domain walls. The period of PDW phase diverges as the confinement length ${D}_{c2}\sim 16{\xi}_{0}$ . The PDW phase breaks timereversal symmetry, translation invariance, but is invariant under the combination of timereversal and translation by a onehalf period of the PDW. The mass current distribution of the PDW phase reflects this combined symmetry, and originates from the spectra of edge Fermions and the chiral branches bound to the domain walls. Under sufficiently strong confinement a secondorder transition occurs to the nonchiral ‘polar phase’ at $D\to {D}_{{c}_{2}}$ , in which a single pwave orbital state of Cooper pairs is aligned along the channel. ${D}_{c1}\sim 9{\xi}_{0}$ 
Abstract We measure the thermal electron energization in 1D and 2D particleincell simulations of quasiperpendicular, lowbeta (
β _{p}= 0.25) collisionless ion–electron shocks with mass ratiom _{i}/m _{e}= 200, fast Mach number –4, and upstream magnetic field angle ${\mathcal{M}}_{\mathrm{ms}}=1$θ _{Bn}= 55°–85° from the shock normal . It is known that shock electron heating is described by an ambipolar, $\stackrel{\u02c6}{\mathit{n}}$ parallel electric potential jump, ΔB ϕ _{∥}, that scales roughly linearly with the electron temperature jump. Our simulations have –0.2 in units of the preshock ions’ bulk kinetic energy, in agreement with prior measurements and simulations. Different ways to measure $\mathrm{\Delta}{\varphi}_{\parallel}/(0.5{m}_{\mathrm{i}}{{u}_{\mathrm{sh}}}^{2})\sim 0.1$ϕ _{∥}, including the use of de Hoffmann–Teller frame fields, agree to tensofpercent accuracy. Neglecting offdiagonal electron pressure tensor terms can lead to a systematic underestimate ofϕ _{∥}in our lowβ _{p}shocks. We further focus on twoθ _{Bn}= 65° shocks: a ( ${\mathcal{M}}_{\mathrm{s}}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}4$ ) case with a long, 30 ${\mathcal{M}}_{\mathrm{A}}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}1.8$d _{i}precursor of whistler waves along , and a $\stackrel{\u02c6}{\mathit{n}}$ ( ${\mathcal{M}}_{\mathrm{s}}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}7$ ) case with a shorter, 5 ${\mathcal{M}}_{\mathrm{A}}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}3.2$d _{i}precursor of whistlers oblique to both and $\stackrel{\u02c6}{\mathit{n}}$ ;B d _{i}is the ion skin depth. Within the precursors,ϕ _{∥}has a secular rise toward the shock along multiple whistler wavelengths and also has localized spikes within magnetic troughs. In a 1D simulation of the , ${\mathcal{M}}_{\mathrm{s}}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}4$θ _{Bn}= 65° case,ϕ _{∥}shows a weak dependence on the electron plasmatocyclotron frequency ratioω _{pe}/Ω_{ce}, andϕ _{∥}decreases by a factor of 2 asm _{i}/m _{e}is raised to the true proton–electron value of 1836. 
Abstract We present ALMA dust polarization and molecular line observations toward four clumps (I(N), I, IV, and V) in the massive starforming region NGC 6334. In conjunction with largescale dust polarization and molecular line data from JCMT, Planck, and NANTEN2, we make a synergistic analysis of relative orientations between magnetic fields (
θ _{B}), column density gradients (θ _{NG}), local gravity (θ _{LG}), and velocity gradients (θ _{VG}) to investigate the multiscale (from ∼30 to 0.003 pc) physical properties in NGC 6334. We find that the relative orientation betweenθ _{B}andθ _{NG}changes from statistically more perpendicular to parallel as column density ( ) increases, which is a signature of transtosubAlfvénic turbulence at complex/cloud scales as revealed by previous numerical studies. Because ${N}_{{\mathrm{H}}_{2}}$θ _{NG}andθ _{LG}are preferentially aligned within the NGC 6334 cloud, we suggest that the more parallel alignment betweenθ _{B}andθ _{NG}at higher is because the magnetic field line is dragged by gravity. At even higher ${N}_{{\mathrm{H}}_{2}}$ , the angle between ${N}_{{\mathrm{H}}_{2}}$θ _{B}andθ _{NG}orθ _{LG}transits back to having no preferred orientation, or statistically slightly more perpendicular, suggesting that the magnetic field structure is impacted by star formation activities. A statistically more perpendicular alignment is found betweenθ _{B}andθ _{VG}throughout our studied range, which indicates a transtosubAlfvénic state at small scales as well, and this signifies that magnetic field has an important role in the star formation process in NGC 6334. The normalized masstoflux ratio derived from the polarizationintensity gradient (KTH) method increases with ${N}_{{\mathrm{H}}_{2}}$ , but the KTH method may fail at high ${N}_{{\mathrm{H}}_{2}}$ due to the impact of star formation feedback. ${N}_{{\mathrm{H}}_{2}}$