skip to main content


Title: Plume or bubble? Mixed-convection flow regimes and city-scale circulations
Large-scale circulations around a city are co-modulated by the urban heat island and by regional wind patterns. Depending on these variables, the circulations fall into different regimes ranging from advection-dominated (plume regime) to convection-driven (bubble regime). Using dimensional analysis and large-eddy simulations, this study investigates how these different circulations scale with urban and rural heat fluxes, as well as upstream wind speed. Two dimensionless parameters are shown to control the dynamics of the flow: (1) the ratio of rural to urban thermal convective velocities that contrasts their respective buoyancy fluxes and (2) the ratio of bulk inflow velocity to the convection velocity in the rural area. Finally, the vertical flow velocities transecting the rural to urban transitions are used to develop a criterion for categorizing different large-scale circulations into plume, bubble or transitional regimes. The findings have implications for city ventilation since bubble regimes are expected to trap pollutants, as well as for scaling analysis in canonical mixed-convection flows.  more » « less
Award ID(s):
1664021
NSF-PAR ID:
10183079
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
897
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Particularly challenging classes of heterogeneous surfaces are ones where strong secondary circulations are generated, potentially dominating the flow dynamics. In this study, we focus on land–sea breeze (LSB) circulations resulting from surface thermal contrasts, in the presence of increasing synoptic pressure forcing. The relative importance and orientation of the thermal and synoptic forcings are measured through two dimensionless parameters: a heterogeneity Richardson number (measuring the relative strength of geostrophic wind and convection induced by buoyancy), and the angleαbetween the shore and geostrophic wind. Large‐eddy simulations reveal the emergence of various regimes where the dynamics are asymmetric with respect toα. Along‐shore cases result in deep LSBs similar to the scenario with no synoptic background, irrespective of the geostrophic wind strength. Across‐shore simulations exhibit a circulation cell that decreases in height with increasing synoptic forcing. However, at the highest synoptic winds simulated, the circulation cell is advected away with sea‐to‐land winds, while a shallow circulation persists for land‐to‐sea cases. Scaling analysis that relates the internal parametersQshore(net shore volumetric flux) andqshore(net shore advected kinematic heat flux) to the external input parameters results in a succinct model of the shore fluxes that also helps explain the physical implications of the identified LSBs. Finally, the vertical profiles of the shore‐normal velocity and shore‐advected heat flux are used, with the aid ofk‐means clustering, to independently classify the LSBs into four regimes (canonical, sea‐driven, land‐driven, and advected), corroborating our visual categorization.

     
    more » « less
  2. Abstract

    Coastal marine heatwaves (MHWs) modulate coastal climate through ocean‐land‐atmosphere interactions, but little is known about how coastal MHWs interact with coastal cities and modify urban thermal environment. In this study, a representative urban coastal environment under MHWs is simplified to a mixed convection problem. Fourteen large‐eddy simulations (LESs) are conducted to investigate how coastal cities interact with MHWs. We consider the simulations by simple urban roughness setup (Set A) as well as explicit urban roughness representation (Set B). Besides, different MHW intensities, synoptic wind speeds, surface fluxes of urban and sea patches are considered. Results suggest that increasing MHW intensity alters streamwise potential temperature gradient and vertical velocity direction. The magnitude of vertical velocity and urban heat island (UHI) intensity decrease with increasing synoptic wind speed. Changing urban or sea surface heat flux also leads to important differences in flow and temperature fields. Comparison between Set A and B reveals a significant increase of vertical velocity magnitude and UHI intensity. To further understand this phenomenon, a canopy layer UHI model is proposed to show the relationship between UHI intensity and urban canopy, thermal heterogeneity and mean advection. The effect of urban canopy is considered in terms of an additional vertical velocity scale that facilitates heat transport from the heated surface and therefore increases UHI intensity. The model can well explain the trend of the simulated results and implies that overlooking the effect of urban canopy underestimates canopy UHI in urban coastal environment.

     
    more » « less
  3. Abstract

    Various forms of regime diagrams have become an accepted means of identifying the dominant type of forcing of turbulence in the ocean surface layer. However, all of the proposed forms share a number of issues, demonstrated here, that make them an imperfect tool for this purpose. Instead, I suggest a forcing space consisting of surface buoyancy flux (usually dominated by surface heat flux) and a growth rate defined as the inverse of a theoretical time scale for growth of Langmuir circulations in an unstratified water column. Using coastal data, it is demonstrated that, provided forcing conditions are roughly constant for several hours, location in the upper half-plane of this forcing space predicts organizational characteristics of observed turbulence that range in a systematic way between those of “pure” convection and those of full depth Langmuir circulations. In this upper half-plane, where a convective scale velocity exists and the surface Stokes drift velocity can be computed, allowing calculation of a Stokes scale velocity, a linear combination of the two scale velocities provides a consistent estimate of observed rms turbulent vertical velocity. Time dependence is nevertheless a frequent characteristic of ocean surface layer forcing, if only because of the (usually large) diurnal variation in surface heat flux. It is shown that the time scale of response of surface layer turbulence to time variable forcing depends on whether the major change is due to wind/wave or buoyancy forcing. Relevant modeling studies are suggested.

     
    more » « less
  4. SUMMARY

    We present investigations of rapidly rotating convection in a thick spherical shell geometry relevant to planetary cores, comparing results from quasi-geostrophic (QG), 3-D and hybrid QG-3D models. The 170 reported calculations span Ekman numbers, Ek, between 10−4 and 10−10, Rayleigh numbers, Ra, between 2 and 150 times supercritical and Prandtl numbers, Pr, between 10 and 10−2. The default boundary conditions are no-slip at both the ICB and the CMB for the velocity field, with fixed temperatures at the ICB and the CMB. Cases driven by both homogeneous and inhomogeneous CMB heat flux patterns are also explored, the latter including lateral variations, as measured by Q*, the peak-to-peak amplitude of the pattern divided by its mean, taking values up to 5. The QG model is based on the open-source pizza code. We extend this in a hybrid approach to include the temperature field on a 3-D grid. In general, we find convection is dominated by zonal jets at mid-depths in the shell, with thermal Rossby waves prominent close to the outer boundary when the driving is weaker. For the thick spherical shell geometry studied here the hybrid method is best suited for studying convection at modest forcing, $Ra \le 10 \, Ra_c$ when Pr = 1, and departs from the 3-D model results at higher Ra, displaying systematically lower heat transport characterized by lower Nusselt and Reynolds numbers. We find that the lack of equatorially-antisymmetric motions and z-correlations between temperature and velocity in the buoyancy force contributes to the weaker flows in the hybrid formulation. On the other hand, the QG models yield broadly similar results to the 3-D models, for the specific aspect ratio and range of Rayleigh numbers explored here. We cannot point to major disagreements between these two data sets at Pr ≥ 0.1, with the QG model effectively more strongly driven than the hybrid case due to its cylindrically averaged thermal boundary conditions. When Pr is decreased, the range of agreement between the hybrid and 3-D models expands, for example up to $Ra \le 15 \, Ra_c$ at Pr = 0.1, indicating the hybrid method may be better suited to study convection in the low Pr regime. We thus observe a transition between two regimes: (i) at Pr ≥ 0.1 the QG and 3-D models agree in the studied range of Ra/Rac while the hybrid model fails when $Ra\gt 15\, Ra_c$ and (ii) at Pr = 0.01 the QG and 3-D models disagree for $Ra\gt 10\, Ra_c$ while the hybrid and 3-D models agree fairly well up to $Ra \sim 20\, Ra_c$. Models that include laterally varying heat flux at the outer boundary reproduce regional convection patterns that compare well with those found in similarly forced 3-D models. Previously proposed scaling laws for rapidly rotating convection are tested; our simulations are overall well described by a triple balance between Coriolis, inertia and Archimedean forces with the length-scale of the convection following the diffusion-free Rhines-scaling. The magnitude of Pr affects the number and the size of the jets with larger structures obtained at lower Pr. Higher velocities and lower heat transport are seen on decreasing Pr with the scaling behaviour of the convective velocity displaying a strong dependence on Pr. This study is an intermediate step towards a hybrid model of core convection also including 3-D magnetic effects.

     
    more » « less
  5. The surface wind structure and vertical turbulent transport processes in the eyewall of hurricane Isabel (2003) are investigated using six large-eddy simulations (LESs) with different horizontal grid spacing and three-dimensional (3D) sub-grid scale (SGS) turbulent mixing models and a convection permitting simulation that uses a coarser grid spacing and one-dimensional vertical turbulent mixing scheme. The mean radius-height distribution of storm tangential wind and radial flow, vertical velocity structure, and turbulent kinetic energy and momentum fluxes in the boundary layer generated by LESs are consistent with those derived from historical dropsonde composites, Doppler radar, and aircraft measurements. Unlike the convection permitting simulation that produces storm wind fields lacking small-scale disturbances, all LESs are able to produce sub-kilometer and kilometer scale eddy circulations in the eyewall. The inter-LES differences generally reduce with the decrease of model grid spacing. At 100-m horizontal grid spacing, the vertical momentum fluxes induced by the model-resolved eddies and the associated eddy exchange coefficients in the eyewall simulated by the LESs with different 3D SGS mixing schemes are fairly consistent. Although with uncertainties, the decomposition in terms of eddy scales suggests that sub-kilometer eddies are mainly responsible for the vertical turbulent transport within the boundary layer (~1 km depth following the conventional definition) whereas eddies greater than 1 km become the dominant contributors to the vertical momentum transport above the boundary layer in the eyewall. The strong dependence of vertical turbulent transport on eddy scales suggests that the vertical turbulent mixing parameterization in mesoscale simulations of tropical cyclones is ultimately a scale-sensitive problem. 
    more » « less