skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Laplacian for Nonmanifold Triangle Meshes
Abstract We describe a discrete Laplacian suitable for any triangle mesh, including those that are nonmanifold or nonorientable (with or without boundary). Our Laplacian is a robust drop‐in replacement for the usual cotan matrix, and is guaranteed to have nonnegative edge weights on both interior and boundary edges, even for extremely poor‐quality meshes. The key idea is to build what we call a “tufted cover” over the input domain, which has nonmanifold vertices but manifold edges. Since all edges are manifold, we can flip to an intrinsic Delaunay triangulation; our Laplacian is then the cotan Laplacian of this new triangulation. This construction also provides a high‐quality point cloud Laplacian, via a nonmanifold triangulation of the point set. We validate our Laplacian on a variety of challenging examples (including all models from Thingi10k), and a variety of standard tasks including geodesic distance computation, surface deformation, parameterization, and computing minimal surfaces.  more » « less
Award ID(s):
1943123
PAR ID:
10183575
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Computer Graphics Forum
Volume:
39
Issue:
5
ISSN:
0167-7055
Page Range / eLocation ID:
p. 69-80
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Given only a finite collection of points sampled from a Riemannian manifold embedded in a Euclidean space, in this paper we propose a new method to numerically solve elliptic and parabolic partial differential equations (PDEs) supplemented with boundary conditions. Since the construction of triangulations on unknown manifolds can be both difficult and expensive, both in terms of computational and data requirements, our goal is to solve these problems without a triangulation. Instead, we rely only on using the sample points to define quadrature formulas on the unknown manifold. Our main tool is the diffusion maps algorithm. We re-analyze this well-known method in a variational sense for manifolds with boundary. Our main result is that the variational diffusion maps graph Laplacian is a consistent estimator of the Dirichlet energy on the manifold. This improves upon previous results and provides a rigorous justification of the well-known relationship between diffusion maps and the Neumann eigenvalue problem. Moreover, using semigeodesic coordinates we derive the first uniform asymptotic expansion of the diffusion maps kernel integral operator for manifolds with boundary. This expansion relies on a novel lemma which relates the extrinsic Euclidean distance to the coordinate norm in a normal collar of the boundary. We then use a recently developed method of estimating the distance to boundary function (notice that the boundary location is assumed to be unknown) to construct a consistent estimator for boundary integrals. Finally, by combining these various estimators, we illustrate how to impose Dirichlet and Neumann conditions for some common PDEs based on the Laplacian. Several numerical examples illustrate our theoretical findings. 
    more » « less
  2. This paper describes a numerically robust data structure for encoding intrinsic triangulations of polyhedral surfaces. Many applications demand a correspondence between the intrinsic triangulation and the input surface, but existing data structures either rely on floating point values to encode correspondence, or do not support remeshing operations beyond basic edge flips. We instead provide an integer-based data structure that guarantees valid correspondence, even for meshes with near-degenerate elements. Our starting point is the framework ofnormal coordinatesfrom geometric topology, which we extend to the broader set of operations needed for mesh processing (vertex insertion, edge splits,etc.). The resulting data structure can be used as a drop-in replacement for earlier schemes, automatically improving reliability across a wide variety of applications. As a stress test, we successfully compute an intrinsic Delaunay refinement and associated subdivision for all manifold meshes in the Thingi10k dataset. In turn, we can compute reliable and highly accurate solutions to partial differential equations even on extremely low-quality meshes. 
    more » « less
  3. Abstract Bi-stochastic normalization provides an alternative normalization of graph Laplacians in graph-based data analysis and can be computed efficiently by Sinkhorn–Knopp (SK) iterations. This paper proves the convergence of bi-stochastically normalized graph Laplacian to manifold (weighted-)Laplacian with rates, when $$n$$ data points are i.i.d. sampled from a general $$d$$-dimensional manifold embedded in a possibly high-dimensional space. Under certain joint limit of $$n \to \infty $$ and kernel bandwidth $$\epsilon \to 0$$, the point-wise convergence rate of the graph Laplacian operator (under 2-norm) is proved to be $$ O( n^{-1/(d/2+3)})$$ at finite large $$n$$ up to log factors, achieved at the scaling of $$\epsilon \sim n^{-1/(d/2+3)} $$. When the manifold data are corrupted by outlier noise, we theoretically prove the graph Laplacian point-wise consistency which matches the rate for clean manifold data plus an additional term proportional to the boundedness of the inner-products of the noise vectors among themselves and with data vectors. Motivated by our analysis, which suggests that not exact bi-stochastic normalization but an approximate one will achieve the same consistency rate, we propose an approximate and constrained matrix scaling problem that can be solved by SK iterations with early termination. Numerical experiments support our theoretical results and show the robustness of bi-stochastically normalized graph Laplacian to high-dimensional outlier noise. 
    more » « less
  4. Abstract We define a relative version of the Turaev–Viro invariants for an ideally triangulated compact 3‐manifold with nonempty boundary and a coloring on the edges, generalizing the Turaev–Viro invariants [36] of the manifold. We also propose the volume conjecture for these invariants whose asymptotic behavior is related to the volume of the manifold in the hyperbolic polyhedral metric [22, 23] with singular locus of the edges and cone angles determined by the coloring, and prove the conjecture in the case that the cone angles are sufficiently small. This suggests an approach of solving the volume conjecture for the Turaev–Viro invariants proposed by Chen–Yang [8] for hyperbolic 3‐manifolds with totally geodesic boundary. 
    more » « less
  5. Abstract Kernelized Gram matrix $$W$$ constructed from data points $$\{x_i\}_{i=1}^N$$ as $$W_{ij}= k_0( \frac{ \| x_i - x_j \|^2} {\sigma ^2} ) $$ is widely used in graph-based geometric data analysis and unsupervised learning. An important question is how to choose the kernel bandwidth $$\sigma $$, and a common practice called self-tuned kernel adaptively sets a $$\sigma _i$$ at each point $$x_i$$ by the $$k$$-nearest neighbor (kNN) distance. When $$x_i$$s are sampled from a $$d$$-dimensional manifold embedded in a possibly high-dimensional space, unlike with fixed-bandwidth kernels, theoretical results of graph Laplacian convergence with self-tuned kernels have been incomplete. This paper proves the convergence of graph Laplacian operator $$L_N$$ to manifold (weighted-)Laplacian for a new family of kNN self-tuned kernels $$W^{(\alpha )}_{ij} = k_0( \frac{ \| x_i - x_j \|^2}{ \epsilon \hat{\rho }(x_i) \hat{\rho }(x_j)})/\hat{\rho }(x_i)^\alpha \hat{\rho }(x_j)^\alpha $$, where $$\hat{\rho }$$ is the estimated bandwidth function by kNN and the limiting operator is also parametrized by $$\alpha $$. When $$\alpha = 1$$, the limiting operator is the weighted manifold Laplacian $$\varDelta _p$$. Specifically, we prove the point-wise convergence of $$L_N f $$ and convergence of the graph Dirichlet form with rates. Our analysis is based on first establishing a $C^0$ consistency for $$\hat{\rho }$$ which bounds the relative estimation error $$|\hat{\rho } - \bar{\rho }|/\bar{\rho }$$ uniformly with high probability, where $$\bar{\rho } = p^{-1/d}$$ and $$p$$ is the data density function. Our theoretical results reveal the advantage of the self-tuned kernel over the fixed-bandwidth kernel via smaller variance error in low-density regions. In the algorithm, no prior knowledge of $$d$$ or data density is needed. The theoretical results are supported by numerical experiments on simulated data and hand-written digit image data. 
    more » « less