skip to main content


Title: Spatial and temporal variation in river corridor exchange across a 5th-order mountain stream network
Abstract. Although most field and modeling studies of river corridorexchange have been conducted at scales ranging from tens to hundreds of meters,results of these studies are used to predict their ecological andhydrological influences at the scale of river networks. Further complicatingprediction, exchanges are expected to vary with hydrologic forcing and thelocal geomorphic setting. While we desire predictive power, we lack acomplete spatiotemporal relationship relating discharge to the variation ingeologic setting and hydrologic forcing that is expected across a riverbasin. Indeed, the conceptual model of Wondzell (2011) predicts systematicvariation in river corridor exchange as a function of (1) variation inbaseflow over time at a fixed location, (2) variation in discharge withlocation in the river network, and (3) local geomorphic setting. To testthis conceptual model we conducted more than 60 solute tracer studiesincluding a synoptic campaign in the 5th-order river network of the H. J. Andrews Experimental Forest (Oregon, USA) and replicate-in-time experimentsin four watersheds. We interpret the data using a series of metricsdescribing river corridor exchange and solute transport, testing forconsistent direction and magnitude of relationships relating these metricsto discharge and local geomorphic setting. We confirmed systematic decreasein river corridor exchange space through the river networks, from headwatersto the larger main stem. However, we did not find systematic variation withchanges in discharge through time or with local geomorphic setting. Whileinterpretation of our results is complicated by problems with the analyticalmethods, the results are sufficiently robust for us to conclude that space-for-timeand time-for-space substitutions are not appropriate in our study system.Finally, we suggest two strategies that will improve the interpretability oftracer test results and help the hyporheic community develop robust datasets that will enable comparisons across multiple sites and/or dischargeconditions.  more » « less
Award ID(s):
1652293
NSF-PAR ID:
10183700
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Hydrology and Earth System Sciences
Volume:
23
Issue:
12
ISSN:
1607-7938
Page Range / eLocation ID:
5199 to 5225
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. River corridors integrate the active channels, geomorphic floodplain and riparian areas, and hyporheic zone while receiving inputs from the uplands and groundwater and exchanging mass and energy with the atmosphere. Here, we trace the development of the contemporary understanding of river corridors from the perspectives of geomorphology, hydrology, ecology, and biogeochemistry. We then summarize contemporary models of the river corridor along multiple axes including dimensions of space and time, disturbance regimes, connectivity, hydrochemical exchange flows, and legacy effects of humans. We explore how river corridor science can be advanced with a critical zone framework by moving beyond a primary focus on discharge-based controls toward multi-factor models that identify dominant processes and thresholds that make predictions that serve society. We then identify opportunities to investigate relationships between large-scale spatial gradients and local-scale processes, embrace that riverine processes are temporally variable and interacting, acknowledge that river corridor processes and services do not respect disciplinary boundaries and increasingly need integrated multidisciplinary investigations, and explicitly integrate humans and their management actions as part of the river corridor. We intend our review to stimulate cross-disciplinary research while recognizing that river corridors occupy a unique position on the Earth's surface.

     
    more » « less
  2. Abstract

    Groundwater discharge flux into rivers (riverine groundwater discharge or RGD) is essential information for the conservation and management of aquatic ecosystems and resources. One way to estimate area‐integrated groundwater discharge into surface water bodies is to measure the concentration of a groundwater tracer within the water body. We assessed groundwater discharge using222Rn, a tracer common in many surface water studies, through field measurements, surface water222Rn mass balance model, and groundwater flow simulation, for the seldom studied but ubiquitous setting of a flooding river corridor. The investigation was conducted at the dam‐regulated Lower Colorado River (LCR) in Austin, Texas, USA. We found that222Rn in both the river water and groundwater in the river bank changed synchronously over a 12‐hour flood cycle. A222Rn mass balance model allowed for estimation of groundwater discharge into a 500‐m long reach of the LCR over the flood. The groundwater discharge ranged between negative values (indicating recharge) to 1570 m3/h; groundwater discharge from groundwater flow simulations corroborated these estimates. However, for the dynamic groundwater discharge estimated by the222Rn box model, assuming whether the groundwater222Rn endmember was constant or dynamic led to notably different results. The resultant groundwater discharge estimates are also highly sensitive to river222Rn values. We thus recommend that when using this approach to accurately characterize dynamic groundwater discharge, the222Rn in near‐stream groundwater should be monitored at the same frequency as river222Rn. If this is not possible, the222Rn method can still provide reasonable but approximate groundwater discharge given background information on surface water‐groundwater exchange time scales.

     
    more » « less
  3. Abstract

    Hydrologic connectivity controls the lateral exchange of water, solids, and solutes between rivers and floodplains, and is critical to ecosystem function, water treatment, flood attenuation, and geomorphic processes. This connectivity has been well‐studied, typically through the lens of fluvial flooding. In regions prone to heavy rainfall, the timing and magnitude of lateral exchange may be altered by pluvial flooding on the floodplain. We collected measurements of flow depth and velocity in the Trinity River floodplain in coastal Texas (USA) during Tropical Storm Imelda (2019), which produced up to 75 cm of rainfall locally. We developed a two‐dimensional hydrodynamic model at high resolution for a section of the Trinity River floodplain inspired by the compound flooding of Imelda. We then employed Lagrangian particle routing to quantify how residence times and particle velocities changed as flooding shifted from rainfall‐driven to river‐driven. Results show that heavy rainfall initiated lateral exchange before river discharge reached flood levels. The presence of rainwater also reduced floodplain storage, causing river water to be confined to a narrow corridor on the floodplain, while rainwater residence times were increased from the effect of high river flow. Finally, we analyzed the role of floodplain channels in facilitating surface‐water connectivity by varying model resolution in the floodplain. While the resolution of floodplain channels was important locally, it did not affect as much the overall floodplain behavior. This study demonstrates the complexity of floodplain hydrodynamics under conditions of heavy rainfall, with implications for sediment deposition and nutrient removal during floods.

     
    more » « less
  4. Abstract

    Fluvial networks integrate, transform, and transport constituents from terrestrial and aquatic ecosystems. To date, most research on water quality dynamics has focused on process understanding at individual streams, and, as a result, there is a lack of studies analyzing how physical and biogeochemical drivers scale across fluvial networks. We performed tracer tests in five stream orders of the Jemez River continuum in New Mexico, USA, to quantify reach‐scale hyporheic exchange during two different seasonal periods to address the following: How do hyporheic zone contributions to overall riverine processing change with space and time? And does the spatiotemporal variability of hyporheic exchange scale across fluvial networks? Combining conservative (i.e., bromide) and reactive (i.e., resazurin) tracer analyses with solute transport modeling, we found a dominance of reaction‐limited transport conditions and a decrease of the contributions of hyporheic processing across stream orders and flow regimes. Our field‐based findings suggest that achieving knowledge transferability of hyporheic processing within fluvial networks may be possible, especially when process variability is sampled across multiple stream orders and flow regimes. Therefore, we propose a shift in our traditional approach to investigating scaling patterns in transport processes, which currently relies on the interpretation of studies conducted in multiple sites (mainly in headwater streams) that are located in different fluvial networks, to a more cohesive, network‐centered investigation of processes using the same or readily comparable methods.

     
    more » « less
  5. Abstract

    Hyporheic exchange is a crucial control of the type and rates of streambed biogeochemical processes, including metabolism, respiration, nutrient turnover, and the transformation of pollutants. Previous work has shown that increasing discharge during an individual peak flow event strengthens biogeochemical turnover by enhancing the exchange of water and dissolved solutes. However, due to the nonsteady nature of the exchange process, successive peak flow events do not exhibit proportional variations in residence time and turnover, and in some cases, can reduce the hyporheic zones' biogeochemical potential. Here, we used a process‐based model to explore the role of successive peak flow events on the flow and transport characteristics of bedform‐induced hyporheic exchange. We conducted a systematic analysis of the impacts of the events' magnitude, duration, and time between peaks in the hyporheic zone's fluxes, penetration, and residence times. The relative contribution of each event to the transport of solutes across the sediment‐water interface was inferred from transport simulations of a conservative solute. In addition to temporal variations in the hyporheic flow field, our results demonstrate that the separation between two events determines the temporal evolution of residence time and that event time lags longer than the memory of the system result in successive events that can be treated independently. This study highlights the importance of discharge variability in the dynamics of hyporheic exchange and its potential implications for biogeochemical transformations and fate of contaminants along river corridors.

     
    more » « less