skip to main content


Title: The reniform body: An integrative lateral protocerebralneuropil complex of Eumalacostraca identified in Stomatopodaand Brachyura
Mantis shrimps (Stomatopoda) possess in common with other crustaceans, and with Hexapoda, specific neuroanatomical attributes of the protocerebrum, the most anterior part of the arthropod brain. These attributes include assemblages of interconnected centers called the central body complex and in the lateral protocerebra, situated in the eyestalks, paired mushroom bodies. The phenotypic homologues of these centers across Panarthropoda support the view that ancestral integrative circuits crucial to action selection and memory have persisted since the early Cambrian or late Ediacaran. However, the discovery of another prominent integrative neuropil in the stomatopod lateral protocerebrum raises the question whether it is unique to Stomatopoda or at least most developed in this lineage, which may have originated in the upper Ordovician or early Devonian. Here, we describe the neuroanatomical structure of this center, called the reniform body. Using confocal microscopy and classical silver staining, we demonstrate that the reniform body receives inputs from multiple sources, including the optic lobe's lobula. Although the mushroom body also receives projections from the lobula, it is entirely distinct from the reniform body, albeit connected to it by discrete tracts. We discuss the implications of their coexistence in Stomatopoda, the occurrence of the reniform body in another eumalacostracan lineage and what this may mean for our understanding of brain functionality in Pancrustacea.  more » « less
Award ID(s):
1754610
NSF-PAR ID:
10183849
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Journal of comparative neurology
ISSN:
1096-9861
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mantis shrimps (Stomatopoda) possess in common with other crustaceans, and with Hexapoda, specific neuroanatomical attributes of the protocerebrum, the most anterior part of the arthropod brain. These attributes include assemblages of interconnected centers called the central body complex and in the lateral protocerebra, situated in the eyestalks, paired mushroom bodies. The phenotypic homologues of these centers across Panarthropoda support the view that ancestral integrative circuits crucial to action selection and memory have persisted since the early Cambrian or late Ediacaran. However, the discovery of another prominent integrative neuropil in the stomatopod lateral protocerebrum raises the question whether it is unique to Stomatopoda or at least most developed in this lineage, which may have originated in the upper Ordovician or early Devonian. Here, we describe the neuroanatomical structure of this center, called the reniform body. Using confocal microscopy and classical silver staining, we demonstrate that the reniform body receives inputs from multiple sources, including the optic lobe's lobula. Although the mushroom body also receives projections from the lobula, it is entirely distinct from the reniform body, albeit connected to it by discrete tracts. We discuss the implications of their coexistence in Stomatopoda, the occurrence of the reniform body in another eumalacostracan lineage and what this may mean for our understanding of brain functionality in Pancrustacea. 
    more » « less
  2. Paired centers in the forebrain of insects, called the mushroom bodies, have become the most investigated brain region of any invertebrate due to novel genetic strategies that relate unique morphological attributes of these centers to their functional roles in learning and memory. Mushroom bodies possessing all the morphological attributes of those in dicondylic insects have been identified in mantis shrimps, basal hoplocarid crustaceans that are sister to Eumalacostraca, the most species-rich group of Crustacea. However, unless other examples of mushroom bodies can be identified in Eumalacostraca, the possibility is that mushroom body-like centers may have undergone convergent evolution in Hoplocarida and are unique to this crustacean lineage. Here, we provide evidence that speaks against convergent evolution, describing in detail the paired mushroom bodies in the lateral protocerebrum of a decapod crustacean, Lebbeus groenlandicus, a species belonging to the infraorder Caridea, an ancient lineage of Eumalacostraca. 
    more » « less
  3. Abstract

    Paired centers in the forebrain of insects, called the mushroom bodies, have become the most investigated brain region of any invertebrate due to novel genetic strategies that relate unique morphological attributes of these centers to their functional roles in learning and memory. Mushroom bodies possessing all the morphological attributes of those in dicondylic insects have been identified in mantis shrimps, basal hoplocarid crustaceans that are sister to Eumalacostraca, the most species‐rich group of Crustacea. However, unless other examples of mushroom bodies can be identified in Eumalacostraca, the possibility is that mushroom body‐like centers may have undergone convergent evolution in Hoplocarida and are unique to this crustacean lineage. Here, we provide evidence that speaks against convergent evolution, describing in detail the paired mushroom bodies in the lateral protocerebrum of a decapod crustacean,Lebbeus groenlandicus, a species belonging to the infraorder Caridea, an ancient lineage of Eumalacostraca.

     
    more » « less
  4. Brain centers possessing a suite of neuroanatomical characters that define mushroom bodies of dicondylic insects have been identified in mantis shrimps, which are basal malacostracan crustaceans. Recent studies of the caridean shrimp Lebbeus groenlandicus further demonstrate the existence of mushroom bodies in Malacostraca. Nevertheless, received opinion promulgates the hypothesis that domed centers called hemiellipsoid bodies typifying reptantian crustaceans, such as lobsters and crayfish, represent the malacostracan cerebral ground pattern. Here, we provide evidence from the marine hermit crab Pagurus hirsutiusculus that refutes this view. P. hirsutiusculus, which is a member of the infraorder Anomura, reveals a chimeric morphology that incorporates features of a domed hemiellipsoid body and a columnar mushroom body. These attributes indicate that a mushroom body morphology is the ancestral ground pattern, from which the domed hemiellipsoid body derives and that the “standard” reptantian hemiellipsoid bodies that typify Astacidea and Achelata are extreme examples of divergence from this ground pattern. This interpretation is underpinned by comparing the lateral protocerebrum of Pagurus with that of the crayfish Procambarus clarkii and Orconectes immunis, members of the reptantian infraorder Astacidea. 
    more » « less
  5. Abstract

    Brain centers possessing a suite of neuroanatomical characters that define mushroom bodies of dicondylic insects have been identified in mantis shrimps, which are basal malacostracan crustaceans. Recent studies of the caridean shrimpLebbeus groenlandicusfurther demonstrate the existence of mushroom bodies in Malacostraca. Nevertheless, received opinion promulgates the hypothesis that domed centers called hemiellipsoid bodies typifying reptantian crustaceans, such as lobsters and crayfish, represent the malacostracan cerebral ground pattern. Here, we provide evidence from the marine hermit crabPagurus hirsutiusculusthat refutes this view.P. hirsutiusculus, which is a member of the infraorder Anomura, reveals a chimeric morphology that incorporates features of a domed hemiellipsoid body and a columnar mushroom body. These attributes indicate that a mushroom body morphology is the ancestral ground pattern, from which the domed hemiellipsoid body derives and that the “standard” reptantian hemiellipsoid bodies that typify Astacidea and Achelata are extreme examples of divergence from this ground pattern. This interpretation is underpinned by comparing the lateral protocerebrum ofPaguruswith that of the crayfishProcambarus clarkiiandOrconectes immunis, members of the reptantian infraorder Astacidea.

     
    more » « less