skip to main content


Title: Viral elements and their potential influence on microbial processes along the permanently stratified Cariaco Basin redoxcline
Abstract

Little is known about viruses in oxygen-deficient water columns (ODWCs). In surface ocean waters, viruses are known to act as gene vectors among susceptible hosts. Some of these genes may have metabolic functions and are thus termed auxiliary metabolic genes (AMGs). AMGs introduced to new hosts by viruses can enhance viral replication and/or potentially affect biogeochemical cycles by modulating key microbial pathways. Here we identify 748 viral populations that cluster into 94 genera along a vertical geochemical gradient in the Cariaco Basin, a permanently stratified and euxinic ocean basin. The viral communities in this ODWC appear to be relatively novel as 80 of these viral genera contained no reference viral sequences, likely due to the isolation and unique features of this system. We identify viral elements that encode AMGs implicated in distinctive processes, such as sulfur cycling, acetate fermentation, signal transduction, [Fe–S] formation, and N-glycosylation. These AMG-encoding viruses include two putative Mu-like viruses, and viral-like regions that may constitute degraded prophages that have been modified by transposable elements. Our results provide an insight into the ecological and biogeochemical impact of viruses oxygen-depleted and euxinic habitats.

 
more » « less
NSF-PAR ID:
10184018
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
The ISME Journal
Volume:
14
Issue:
12
ISSN:
1751-7362
Format(s):
Medium: X Size: p. 3079-3092
Size(s):
p. 3079-3092
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Viruses play an important role in the ecology and biogeochemistry of marine ecosystems. Beyond mortality and gene transfer, viruses can reprogram microbial metabolism during infection by expressing auxiliary metabolic genes (AMGs) involved in photosynthesis, central carbon metabolism, and nutrient cycling. While previous studies have focused on AMG diversity in the sunlit and dark ocean, less is known about the role of viruses in shaping metabolic networks along redox gradients associated with marine oxygen minimum zones (OMZs). Here, we analyzed relatively quantitative viral metagenomic datasets that profiled the oxygen gradient across Eastern Tropical South Pacific (ETSP) OMZ waters, assessing whether OMZ viruses might impact nitrogen (N) cycling via AMGs. Identified viral genomes encoded six N-cycle AMGs associated with denitrification, nitrification, assimilatory nitrate reduction, and nitrite transport. The majority of these AMGs (80%) were identified in T4-like Myoviridae phages, predicted to infect Cyanobacteria and Proteobacteria, or in unclassified archaeal viruses predicted to infect Thaumarchaeota. Four AMGs were exclusive to anoxic waters and had distributions that paralleled homologous microbial genes. Together, these findings suggest viruses modulate N-cycling processes within the ETSP OMZ and may contribute to nitrogen loss throughout the global oceans thus providing a baseline for their inclusion in the ecosystem and geochemical models.

     
    more » « less
  2. Abstract

    Microbial communities in oxygen minimum zones (OMZs) are known to have significant impacts on global biogeochemical cycles, but viral influence on microbial processes in these regions are much less studied. Here we provide baseline ecological patterns using microscopy and viral metagenomics from the Eastern Tropical North Pacific (ETNP) OMZ region that enhance our understanding of viruses in these climate-critical systems. While extracellular viral abundance decreased below the oxycline, viral diversity and lytic infection frequency remained high within the OMZ, demonstrating that viral influences on microbial communities were still substantial without the detectable presence of oxygen. Viral community composition was strongly related to oxygen concentration, with viral populations in low-oxygen portions of the water column being distinct from their surface layer counterparts. However, this divergence was not accompanied by the expected differences in viral-encoded auxiliary metabolic genes (AMGs) relating to nitrogen and sulfur metabolisms that are known to be performed by microbial communities in these low-oxygen and anoxic regions. Instead, several abundant AMGs were identified in the oxycline and OMZ that may modulate host responses to low-oxygen stress. We hypothesize that this is due to selection for viral-encoded genes that influence host survivability rather than modulating host metabolic reactions within the ETNP OMZ. Together, this study shows that viruses are not only diverse throughout the water column in the ETNP, including the OMZ, but their infection of microorganisms has the potential to alter host physiological state within these biogeochemically important regions of the ocean.

     
    more » « less
  3. Summary

    Oxygen minimum zones (OMZs) are critical to marine nitrogen cycling and global climate change. While OMZ microbial communities are relatively well‐studied, little is known about their viruses. Here, we assess the viral community ecology of 22 deeply sequenced viral metagenomes along a gradient of oxygenated to anoxic waters (<0.02 μmol/l O2) in the Eastern Tropical South Pacific (ETSP) OMZ. We identified 46 127 viral populations (≥5 kb), which augments the known viruses from ETSP by 10‐fold. Viral communities clustered into six groups that correspond to oceanographic features. Oxygen concentration was the predominant environmental feature driving viral community structure. Alpha and beta diversity of viral communities in the anoxic zone were lower than in surface waters, which parallels the low microbial diversity seen in other studies. ETSP viruses were largely endemic, with the majority of shared viruses (87%) also present in other OMZ samples. We detected 543 putative viral‐encoded auxiliary metabolic genes (AMGs), of which some have a distribution that reflects physico‐chemical characteristics across depth. Together these findings provide an ecological baseline for viral community structure, drivers and population variability in OMZs that will help future studies assess the role of viruses in these climate‐critical environments.

     
    more » « less
  4. Summary

    Bacteriophages encode host‐acquired functional genes known as auxiliary metabolic genes (AMGs). Photosynthesis AMGs are commonly found in marine cyanobacteria‐infectingMyoviridaeandPodoviridaecyanophages, but their ecology remains understudied in freshwater environments. To advance knowledge of this issue, we analysed viral metagenomes collected in the summertime for four years from five lakes and two estuarine locations interconnected by the Chattahoochee River, Southeast USA. Sequences representing ten different AMGs were recovered and found to be prevalent in all sites. Most freshwater AMGs were 10‐fold less abundant than estuarine and marine AMGs and were encoded by novelMyoviridaeandPodoviridaecyanophage genera. Notably, several of the corresponding viral genomes showed endemism to a specific province along the river. This translated intopsbAgene phylogenetic clustering patterns that matched a marine vs. freshwater origin indicating thatpsbAmay serve as a robust classification and source‐tracking biomarker. Genomes classified in a novel viral lineage represented by isolate S‐EIVl containedpsbA, which is unprecedented for this lineage. Collectively, our findings indicated that the acquisition of photosynthesis AMGs is a widespread strategy used by cyanophages in aquatic ecosystems, and further indicated the existence of viral provinces in which certain viral species and/or genotypes are locally abundant.

     
    more » « less
  5. Rappe, Michael S. (Ed.)
    ABSTRACT For the abundant marine Alphaproteobacterium Pelagibacter (SAR11), and other bacteria, phages are powerful forces of mortality. However, little is known about the most abundant Pelagiphages in nature, such as the widespread HTVC023P-type, which is currently represented by two cultured phages. Using viral metagenomic data sets and fluorescence-activated cell sorting, we recovered 80 complete, undescribed Podoviridae genomes that form 10 phylogenomically distinct clades (herein, named Clades I to X) related to the HTVC023P-type. These expanded the HTVC023P-type pan-genome by 15-fold and revealed 41 previously unknown auxiliary metabolic genes (AMGs) in this viral lineage. Numerous instances of partner-AMGs (colocated and involved in related functions) were observed, including partners in nucleotide metabolism, DNA hypermodification, and Curli biogenesis. The Type VIII secretion system (T8SS) responsible for Curli biogenesis was identified in nine genomes and expanded the repertoire of T8SS proteins reported thus far in viruses. Additionally, the identified T8SS gene cluster contained an iron-dependent regulator (FecR), as well as a histidine kinase and adenylate cyclase that can be implicated in T8SS function but are not within T8SS operons in bacteria. While T8SS are lacking in known Pelagibacter , they contribute to aggregation and biofilm formation in other bacteria. Phylogenetic reconstructions of partner-AMGs indicate derivation from cellular lineages with a more recent transfer between viral families. For example, homologs of all T8SS genes are present in syntenic regions of distant Myoviridae Pelagiphages, and they appear to have alphaproteobacterial origins with a later transfer between viral families. The results point to an unprecedented multipartner-AMG transfer between marine Myoviridae and Podoviridae. Together with the expansion of known metabolic functions, our studies provide new prospects for understanding the ecology and evolution of marine phages and their hosts. IMPORTANCE One of the most abundant and diverse marine bacterial groups is Pelagibacter . Phages have roles in shaping Pelagibacter ecology; however, several Pelagiphage lineages are represented by only a few genomes. This paucity of data from even the most widespread lineages has imposed limits on the understanding of the diversity of Pelagiphages and their impacts on hosts. Here, we report 80 complete genomes, assembled directly from environmental data, which are from undescribed Pelagiphages and render new insights into the manipulation of host metabolism during infection. Notably, the viruses have functionally related partner genes that appear to be transferred between distant viruses, including a suite that encode a secretion system which both brings a new functional capability to the host and is abundant in phages across the ocean. Together, these functions have important implications for phage evolution and for how Pelagiphage infection influences host biology in manners extending beyond canonical viral lysis and mortality. 
    more » « less