skip to main content


Title: Direct-modulated optical networks for interposer systems
We present a new interposer-level optical network based on direct-modulated lasers such as vertical-cavity surfaceemitting lasers (VCSELs) or transistor lasers (TLs). Our key observation is that, the physics of these lasers is such that they must transmit significantly more power (21×) than is needed by the receiver. We take advantage of this excess optical power to create a new network architecture called Rome, which splits optical signals using passive splitters to allow flexible bandwidth allocation among different transmitter and receiver pairs while imposing minimal power and design costs. Using multi-chip module GPUs (MCM-GPUs) as a case study, we thoroughly evaluate network power and performance, and show that (1) Rome is capable of efficiently scaling up MCM-GPUs with up to 1024 streaming multiprocessors, and (2) Rome outperforms various competing designs in terms of energy efficiency (by up to 4×) and performance (by up to 143%).  more » « less
Award ID(s):
1640196 1640192
PAR ID:
10184049
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
NOCS '19
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce an ensemble of artificial intelligence models for gravitational wave detection that we trained in the Summit supercomputer using 32 nodes, equivalent to 192 NVIDIA V100 GPUs, within 2 h. Once fully trained, we optimized these models for accelerated inference using NVIDIA TensorRT . We deployed our inference-optimized AI ensemble in the ThetaGPU supercomputer at Argonne Leadership Computer Facility to conduct distributed inference. Using the entire ThetaGPU supercomputer, consisting of 20 nodes each of which has 8 NVIDIA A100 Tensor Core GPUs and 2 AMD Rome CPUs, our NVIDIA TensorRT -optimized AI ensemble processed an entire month of advanced LIGO data (including Hanford and Livingston data streams) within 50 s. Our inference-optimized AI ensemble retains the same sensitivity of traditional AI models, namely, it identifies all known binary black hole mergers previously identified in this advanced LIGO dataset and reports no misclassifications, while also providing a 3 X inference speedup compared to traditional artificial intelligence models. We used time slides to quantify the performance of our AI ensemble to process up to 5 years worth of advanced LIGO data. In this synthetically enhanced dataset, our AI ensemble reports an average of one misclassification for every month of searched advanced LIGO data. We also present the receiver operating characteristic curve of our AI ensemble using this 5 year long advanced LIGO dataset. This approach provides the required tools to conduct accelerated, AI-driven gravitational wave detection at scale. 
    more » « less
  2. High-peak-power lasers are fundamental to high-field science: increased laser intensity has enabled laboratory astrophysics, relativistic plasma physics, and compact laser-based particle accelerators. However, the meter-scale optics required for multi-petawatt lasers to avoid light-induced damage make further increases in power challenging. Plasma tolerates orders-of-magnitude higher light flux than glass, but previous efforts to miniaturize lasers by constructing plasma analogs for conventional optics were limited by low efficiency and poor optical quality. We describe a new approach to plasma optics based on avalanche ionization of atomic clusters that produces plasma volume transmission gratings with dramatically increased diffraction efficiency. We measure an average efficiency of up to 36% and a single-shot efficiency of up to 60%, which is comparable to key components of high-power laser beamlines, while maintaining high spatial quality and focusability. These results suggest that plasma diffraction gratings may be a viable component of future lasers with peak power beyond 10 PW.

     
    more » « less
  3. Abstract

    The past decade has seen tremendous progress in the production and utilization of vortex and vector laser pulses. Although both are considered as structured light beams, the vortex lasers have helical phase fronts and phase singularities, while the vector lasers have spatially variable polarization states and polarization singularities. In contrast to the vortex pulses that carry orbital angular momentum (OAM), the vector laser pulses have a complex spin angular momentum (SAM) and OAM coupling. Despite many potential applications enabled by such pulses, the generation of high-power/-intensity vortex and vector beams remains challenging. Here, we demonstrate using theory and three-dimensional simulations that the strongly-coupled stimulated Brillouin scattering (SC-SBS) process in plasmas can be used as a promising amplification technique with up to 65% energy transfer efficiency from the pump beam to the seed beam for both vortex and vector pulses. We also show that SC-SBS is strongly polarization-dependent in plasmas, enabling an all-optical polarization control of the amplified seed beam. Additionally, the interaction of such structured lasers with plasmas leads to various angular momentum couplings and decouplings that produce intense new light structures with controllable OAM and SAM. This scheme paves the way for novel optical devices such as plasma-based amplifiers and light field manipulators.

     
    more » « less
  4. We proposed and experimentally demonstrated a free-space optical stealth communication system that hides the stealth signal in wide-band spontaneous emission noise. Spontaneous emission light sources have been widely used for illuminations and has been recently deployed for short distance and indoor free-space optical communications, such as LiFi. Since free-space optical communication is a broadcasting network, the users’ privacy is exposed to eavesdropping attacks. In this paper, stealth communication is achieved by taking advantage of the existing properties of spontaneous emission light sources, random phase fluctuations, and protects users’ privacy in free-space communication networks. The keys to hide and recover the stealth signal are the optical delays at the transmitter and receiver. Only by matching the delay length with the pre-shared keys can the authorized receiver recover the stealth signal. Without the right key, the eavesdropper receives a constant power that is the same as illumination light sources and cannot detect the existence of the stealth signal.

     
    more » « less
  5. Recent innovation in large language models (LLMs), and their myriad use cases have rapidly driven up the compute demand for datacenter GPUs. Several cloud providers and other enterprises plan to substantially grow their datacenter capacity to support these new workloads. A key bottleneck resource in datacenters is power, which LLMs are quickly saturating due to their rapidly increasing model sizes.We extensively characterize the power consumption patterns of a variety of LLMs and their configurations. We identify the differences between the training and inference power consumption patterns. Based on our analysis, we claim that the average and peak power utilization in LLM inference clusters should not be very high. Our deductions align with data from production LLM clusters, revealing that inference workloads offer substantial headroom for power oversubscription. However, the stringent set of telemetry and controls that GPUs offer in a virtualized environment make it challenging to build a reliable and robust power management framework.We leverage the insights from our characterization to identify opportunities for better power management. As a detailed use case, we propose a new framework called POLCA, which enables power oversubscription in LLM inference clouds. POLCA is robust, reliable, and readily deployable. Using open-source models to replicate the power patterns observed in production, we simulate POLCA and demonstrate that we can deploy 30% more servers in existing clusters with minimal performance loss. 
    more » « less