- Award ID(s):
- 1917434
- Publication Date:
- NSF-PAR ID:
- 10184207
- Journal Name:
- PloS one
- Page Range or eLocation-ID:
- 1-31
- ISSN:
- 1932-6203
- Sponsoring Org:
- National Science Foundation
More Like this
-
Incarbona, Alessandro (Ed.)Unusually warm conditions recently observed in the Pacific Arctic region included a dramatic loss of sea ice cover and an enhanced inflow of warmer Pacific-derived waters. Moored sediment traps deployed at three biological hotspots of the Distributed Biological Observatory (DBO) during this anomalously warm period collected sinking particles nearly continuously from June 2017 to July 2019 in the northern Bering Sea (DBO2) and in the southern Chukchi Sea (DBO3), and from August 2018 to July 2019 in the northern Chukchi Sea (DBO4). Fluxes of living algal cells, chlorophyll a (chl a ), total particulate matter (TPM), particulate organic carbon (POC), and zooplankton fecal pellets, along with zooplankton and meroplankton collected in the traps, were used to evaluate spatial and temporal variations in the development and composition of the phytoplankton and zooplankton communities in relation to sea ice cover and water temperature. The unprecedented sea ice loss of 2018 in the northern Bering Sea led to the export of a large bloom dominated by the exclusively pelagic diatoms Chaetoceros spp. at DBO2. Despite this intense bloom, early sea ice breakup resulted in shorter periods of enhanced chl a and diatom fluxes at all DBO sites, suggesting a weaker biological pump undermore »
-
Mancinelli, Giorgio (Ed.)The expected reduction of ice algae with declining sea ice may prove to be detrimental to the Pacific Arctic ecosystem. Benthic organisms that rely on sea ice organic carbon (iPOC) sustain benthic predators such as the Pacific walrus ( Odobenus rosmarus divergens ). The ability to track the trophic transfer of iPOC is critical to understanding its value in the food web, but prior methods have lacked the required source specificity. We analyzed the H-Print index, based on biomarkers of ice algae versus phytoplankton contributions to organic carbon in marine predators, in Pacific walrus livers collected in 2012, 2014 and 2016 from the Northern Bering Sea (NBS) and Chukchi Sea. We paired these measurements with stable nitrogen isotopes ( δ 15 N) to estimate trophic position. We observed differences in the contribution of iPOC in Pacific walrus diet between regions, sexes, and age classes. Specifically, the contribution of iPOC to the diet of Pacific walruses was higher in the Chukchi Sea (52%) compared to the NBS (30%). This regional difference is consistent with longer annual sea ice persistence in the Chukchi Sea. Within the NBS, the contribution of iPOC to walrus spring diet was higher in females (~45%) compared tomore »
-
Abstract Recent summer surveys of the northeastern Chukchi Sea found pelagic fishes were dominated by large numbers of age-0 Arctic cod (Boreogadus saida, Gadidae) and walleye pollock (Gadus chalcogrammus, Gadidae), while adult fishes were comparatively scarce. The source and fate of these young fishes remain unclear, as sampling in this region is impeded by seasonal ice cover much of the year. Seafloor-mounted echosounders were deployed at three locations in the northeastern Chukchi Sea from 2017 to 2019 to determine the movement and seasonal variability of these age-0 gadids. These observations indicated that the abundance of pelagic fishes and community composition on the Chukchi Sea shelf were highly variable on seasonal time scales, with few fish present in winter. Tracking indicated that fish movements were strongly correlated with local currents. Fishes were primarily displaced to the northeast in summer and fall, with periodic reversals towards the southwest driven by changes in regional wind patterns. The flux of fishes past the moorings indicated that the prevailing northward currents transport a large proportion of the age-0 pelagic fishes present on the Chukchi shelf in summer to the northeast by fall, leading to relatively low abundances of age-1+fishes in this environment.
-
Ummenhofer, Caroline (Ed.)Changes in gray whale ( Eschrichtius robustus ) phenology and distribution are related to observed and hypothesized prey availability, bottom water temperature, salinity, sea ice persistence, integrated water column and sediment chlorophyll a , and patterns of wind-driven biophysical forcing in the northern Bering and eastern Chukchi seas. This portion of the Pacific Arctic includes four Distributed Biological Observatory (DBO) sampling regions. In the Bering Strait area, passive acoustic data showed marked declines in gray whale calling activity coincident with unprecedented wintertime sea ice loss there in 2017–2019, although some whales were seen there during DBO cruises in those years. In the northern Bering Sea, sightings during DBO cruises show changes in gray whale distribution coincident with a shrinking field of infaunal amphipods, with a significant decrease in prey abundance (r = -0.314, p<0.05) observed in the DBO 2 region over the 2010–2019 period. In the eastern Chukchi Sea, sightings during broad scale aerial surveys show that gray whale distribution is associated with localized areas of high infaunal crustacean abundance. Although infaunal crustacean prey abundance was unchanged in DBO regions 3, 4 and 5, a mid-decade shift in gray whale distribution corresponded to both: (i) a localized increase in infaunalmore »
-
Cooper, Lee W (Ed.)The toxic diatom genus Pseudo-nitzschia is distributed from equatorial to polar regions and is comprised of >57 species, some capable of producing the neurotoxin domoic acid (DA). In the Pacific Arctic Region spanning the Bering, Chukchi, and Beaufort seas, DA is recognized as an emerging human and ecosystem health threat, yet little is known about the composition and distribution of Pseudo-nitzschia species in these waters. This investigation characterized Pseudo-nitzschia assemblages in samples collected in 2018 during summer (August) and fall (October-November) surveys as part of the Distributed Biological Observatory and Arctic Observing Network, encompassing a broad geographic range (57.8° to 73.0°N, -138.9° to -169.9°W) and spanning temperature (-1.79 to 11.7°C) and salinity (22.9 to 32.9) gradients associated with distinct water masses. Species were identified using a genus-specific Automated Ribosomal Intergenic Spacer Analysis (ARISA). Seventeen amplicons were observed; seven corresponded to temperate, sub-polar, or polar Pseudo-nitzschia species based on parallel sequencing efforts ( P . arctica , P . delicatissima , P . granii , P . obtusa , P . pungens , and two genotypes of P . seriata ), and one represented Fragilariopsis oceanica . During summer, particulate DA (pDA; 4.0 to 130.0 ng L -1 ) was observedmore »