skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Maximum Entropy Production (MEP) Method for Modeling Surface Energy Budget – Theory and Applications to Arctic Regions
The Maximum Entropy Production (MEP) method for modeling surface energy budget has been developed and validated at local, regional and global scale including the Arctic regions. The MEP model has solid theoretical foundation built on the Bayesian probability theory, information theory, non-equilibrium thermodynamics and boundary layer turbulence theory. Its formulation has advantageous features including closing energy budget at any space-time scales, independence of moisture and temperature gradient, wind speed and surface roughness, and free of tunable empirical parameters. Application of the MEP model has been covering all types of land covers including Arctic permafrost tundra, sea ice and snow surfaces. Recent tests using field experimental observations suggest that the MEP model using fewer input data and model parameters is able to simulate surface energy budget accurately. It is a more efficient alternative to the classical Penman-Monteith model of potential evapotranspiration. The MEP method has potential to influence the study of Arctic water-energy cycles and climate change.  more » « less
Award ID(s):
1724633
PAR ID:
10184229
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Agu
ISSN:
2346-6855
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Energy budget of Amazonian forests has a large influence on regional and global climate, but relevant data are scarce. A novel energy partition method based on the maximum entropy production (MEP) theory is applied to simulate evapotranspiration in Amazonia. Using site‐level eddy flux data, the MEP method shows high skill at the hourly, daily, and monthly scales. Consistent performance under different levels of land surface dryness is revealed, hinting that drought signal is appropriately resolved. The site‐level MEP‐based estimates outperform the estimates of the Moderate Resolution Imaging Spectroradiometer evapotranspiration product, which is commonly used for large‐scale assessments. At the Amazon basin scale, the two series yield similar averages but exhibit spatial differences. The parameter parsimony and demonstrated skill of the MEP method make it an attractive approach for environments with diverse strategies of water flux control. 
    more » « less
  2. he Arctic has been warming faster than elsewhere, especially during the cold season. According to the leading theory, ice‐albedo feedback warms the Arctic Ocean during the summer, and the heat gained by the ocean is released during the winter, causing the cold‐season warming. Screen and Simmonds (2010; SS10) concluded that the theory is correct by comparing trend patterns in surface air temperature (SAT), surface turbulence heat flux (HF), and net surface infrared radiation (IR). However, in this comparison, downward IR is more appropriate to use. By analyzing the same data used in SS10 using the surface energy budget, it is shown here that over most of the Arctic the skin temperature trend, which closely resembles the SAT trend, is largely accounted for by the downward IR, not the HF, trend. 
    more » « less
  3. Atmospheric model systems, such as those used for weather forecast and reanalysis production, often have significant and systematic errors in their representation of the Arctic surface energy budget and its components. The newly available observation data of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition (2019/2020) enable a range of model analyses and validation in order to advance our understanding of potential model deficiencies. In the present study, we analyze deficiencies in the surface radiative energy budget over Arctic sea ice in the ERA5 global atmospheric reanalysis by comparing against the winter MOSAiC campaign data, as well as, a pan-Arctic level-2 MODIS ice surface temperature remote sensing product. We find that ERA5 can simulate the timing of radiatively clear periods, though it is not able to distinguish the two observed radiative Arctic winter states, radiatively clear and opaquely cloudy, in the distribution of the net surface radiative budget. The ERA5 surface temperature over Arctic sea ice has a conditional error with a positive bias in radiatively clear conditions and a negative bias in opaquely cloudy conditions. The mean surface temperature error is 4°C for radiatively clear situations at MOSAiC and up to 15°C in some parts of the Arctic. The spatial variability of the surface temperature, given by 4 observation sites at MOSAiC, is not captured by ERA5 due to its spatial resolution but represented in the level-2 satellite product. The sensitivity analysis of possible error sources, using satellite products of snow depth and sea ice thickness, shows that the positive surface temperature errors during radiatively clear events are, to a large extent, caused by insufficient sea ice thickness and snow depth representation in the reanalysis system. A positive bias characterizes regions with ice thickness greater than 1.5 m, while the negative bias for thinner ice is partly compensated by the effect of snow. 
    more » « less
  4. null (Ed.)
    Snow cover plays a key role in the water and energy budgets over cold regions. Understanding and parameterizing water and heat exchange over snow surfaces in hydrologic models remains a major challenge. An innovative approach based on the theory of maximum entropy production (MEP) was developed for modeling energy budgets for snow-covered surfaces. This study generalizes the MEP model to simulate surface water vapor (latent heat) fluxes over an entire snowpack lifecycle, including snow accumulation and melting during the early growing season. The expanded MEP model combines soil evaporation, canopy transpiration, and snow sublimation to evaluate snow water loss during the lifecycle of the snowpack. Two hypotheses are tested: (1) sublimation becomes negligible during snowmelt when snowpack is isothermal (0°C) and (2) transpiration is progressively activated as a function of the air temperature during vegetation awakening. The proposed approach is shown to be effective for modeling the total surface water vapor fluxes over the snowpack's lifecycle. Both the hypotheses are supported by field observations. 
    more » « less
  5. Abstract. This study analyzes turbulent energy fluxes in the Arctic atmospheric boundary layer (ABL) using measurements with a small uncrewed aircraft system (sUAS). Turbulent fluxes constitute a major part of the atmospheric energy budget and influence the surface heat balance by distributing energy vertically in the atmosphere. However, only few in situ measurements of the vertical profile of turbulent fluxes in the Arctic ABL exist. The study presents a method to derive turbulent heat fluxes from DataHawk2 sUAS turbulence measurements, based on the flux gradient method with a parameterization of the turbulent exchange coefficient. This parameterization is derived from high-resolution horizontal wind speed measurements in combination with formulations for the turbulent Prandtl number and anisotropy depending on stability. Measurements were taken during the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition in the Arctic sea ice during the melt season of 2020. For three example cases from this campaign, vertical profiles of turbulence parameters and turbulent heat fluxes are presented and compared to balloon-borne, radar, and near-surface measurements. The combination of all measurements draws a consistent picture of ABL conditions and demonstrates the unique potential of the presented method for studying turbulent exchange processes in the vertical ABL profile with sUAS measurements. 
    more » « less