skip to main content


Title: Radiocarbon offsets and old world chronology as relevant to Mesopotamia, Egypt, Anatolia and Thera (Santorini)
Abstract

The new IntCal20 radiocarbon record continues decades of successful practice by employing one calibration curve as an approximation for different regions across the hemisphere. Here we investigate three radiocarbon time-series of archaeological and historical importance from the Mediterranean-Anatolian region, which indicate, or may include, offsets from IntCal20 (~0–2214C years). While modest, these differences are critical for our precise understanding of historical and environmental events across the Mediterranean Basin and Near East. Offsets towards older radiocarbon ages in Mediterranean-Anatolian wood can be explained by a divergence between high-resolution radiocarbon dates from the recent generation of accelerator mass spectrometry (AMS) versus dates from previous technologies, such as low-level gas proportional counting (LLGPC) and liquid scintillation spectrometry (LSS). However, another reason is likely differing growing season lengths and timings, which would affect the seasonal cycle of atmospheric radiocarbon concentrations recorded in different geographic zones. Understanding and correcting these offsets is key to the well-defined calendar placement of a Middle Bronze Age tree-ring chronology. This in turn resolves long-standing debate over Mesopotamian chronology in the earlier second millennium BCE. Last but not least, accurate dating is needed for any further assessment of the societal and environmental impact of the Thera/Santorini volcanic eruption.

 
more » « less
NSF-PAR ID:
10184447
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The science of tropical dendrochronology is now emerging in regions where tree-ring dating had previously not been considered possible. Here, we combine wood anatomical microsectioning techniques and radiocarbon analysis to produce the first tree-ring chronology with verified annual periodicity for a new dendrochronological species, Neltuma alba (commonly known as “algarrobo blanco”) in the tropical Andes of Bolivia. First, we generated a preliminary chronology composed of six trees using traditional dendrochronological methods (i.e., cross-dating). We then measured the 14 C content on nine selected tree rings from two samples and compared them with the Southern Hemisphere (SH) atmospheric 14 C curves, covering the period of the bomb 14 C peak. We find consistent offsets of 5 and 12 years, respectively, in the calendar dates initially assigned, indicating that several tree rings were missing in the sequence. In order to identify the tree-ring boundaries of the unidentified rings we investigated further by analyzing stem wood microsections to examine anatomical characteristics. These anatomical microsections revealed the presence of very narrow terminal parenchyma defining several tree-ring boundaries within the sapwood, which was not visible in sanded samples under a stereomicroscope. Such newly identified tree rings were consistent with the offsets shown by the radiocarbon analysis and allowed us to correct the calendar dates of the initial chronology. Additional radiocarbon measurements over a new batch of rings of the corrected dated samples resulted in a perfect match between the dendrochronological calendar years and the 14 C dating, which is based on good agreement between the tree-ring 14 C content and the SH 14 C curves. Correlations with prior season precipitation and temperature reveal a strong legacy effect of climate conditions prior to the current Neltuma alba growing season. Overall, our study highlights much potential to complement traditional dendrochronology in tree species with challenging tree-ring boundaries with wood anatomical methods and 14 C analyses. Taken together, these approaches confirm that Neltuma alba can be accurately dated and thereby used in climatic and ecological studies in tropical and subtropical South America. 
    more » « less
  2. Characterizing the degree of disturbance in archaeological deposits is critically important for archaeologists assessing foraging strategies, environmental conditions, or behavior patterns of ancient human groups. Qualitative techniques (e.g. micromorphology analysis) have previously been applied to assess the degree of disturbance (age-mixing) in archaeological sites; however, quantitative dating of material in the sites provides a more robust assessment of potential age-mixing. Unfortunately, because of budget constraints, archaeologists are frequently forced to rely on few quantitative age dates for an assemblage, thus obfuscating the signal of age-mixing of the deposit. The development of an affordable and rapid carbonate-target accelerator mass spectrometry (AMS) radiocarbon ( 14 C) dating method provides a cost-effective way to retrieve more quantitative dates from carbonate material in archaeological assemblages to assess the degree of age-mixing in the deposit. This study tests this new technique and dates numerous harvested marine limpet shells from archaeological sites in the Canary Islands to determine whether there is multidecadal to multicentennial age-mixing. A total of 58 shells retrieved from six sites and three islands yielded uncalibrated radiocarbon ages ranging from 2265 ± 40 to 765 ± 35 BP, coinciding with the time of prehistoric human occupation in these islands. While most shells from the same stratum showed statistically equivalent ages, in some cases we detected age ranges that exceeded the imprecisions from analytical errors. This investigation is one of the first to quantitatively illustrate that shells retrieved from depth intervals without evident stratigraphic disturbance do not always contain contemporaneous remains and, therefore, dating each specimen is valuable for developing further paleoclimatic and paleoanthropological inferences. This study presents the first report of carbonate-target 14 C ages from archaeological shell middens, and suggests that this novel radiocarbon methodology can be applied to these sites, thus allowing the generation of a more comprehensive chronology. 
    more » « less
  3. Calendar-dated tree-ring sequences offer an unparalleled resource for high-resolution paleoenvironmental reconstruction. Where such records exist for a few limited geographic regions over the last 8,000 to 12,000 years, they have proved invaluable for creating precise and accurate timelines for past human and environmental interactions. To expand such records across new geographic territory or extend data for certain regions further backward in time, new applications must be developed to secure “floating” (not yet absolutely dated) tree-ring sequences, which cannot be assigned single-calendar year dates by standard dendrochronological techniques. This study develops two approaches to this problem for a critical floating tree-ring chronology from the East Mediterranean Bronze–Iron Age. The chronology is more closely fixed in time using annually resolved patterns of 14 C, modulated by cosmic radiation, between 1700 and 1480 BC. This placement is then tested using an anticorrelation between calendar-dated tree-ring growth responses to climatically effective volcanism in North American bristlecone pine and the Mediterranean trees. Examination of the newly dated Mediterranean tree-ring sequence between 1630 and 1500 BC using X-ray fluorescence revealed an unusual calcium anomaly around 1560 BC. While requiring further replication and analysis, this anomaly merits exploration as a potential marker for the eruption of Thera. 
    more » « less
  4. Abstract

    Tropical peatlands in Southeast Asia cover ∼25 million hectares and exert a strong influence on the global carbon cycle. Recent widespread peatland subsidence and carbon dioxide emissions in response to human activity and climate change have been well documented, but peatland genesis remains poorly understood. Unlike coastal peatlands that established following sea-level stabilization during the mid-Holocene, inland peatlands of Borneo are little studied and have no apparent environmental constraint on their formation. Here, we report radiocarbon dates from the Upper Kapuas Basin which show inland peat formation since at least 47.8 thousand calibrated radiocarbon years before present, ka. We provide a synthesis of new and existing peat basal dates across Borneo, which shows a hiatus in peat genesis during a cool and dry period from 30 to 20 ka. Despite likely peat degradation during that period, the Upper Kapuas is still exceptionally deep, reaching a maximum depth (determined from coring) of 18 m. Our best estimate of mean peat depth over 3833 km2of the Upper Kapuas is 5.16 ± 2.66 m, corresponding to a carbon density of 2790 ± 1440 Mg C ha−1. This is one of the most carbon-dense ecosystems in the world. It withstood the glacial-interglacial climate transition and remains mostly intact, but is increasingly threatened by land-use change.

     
    more » « less
  5. Accelerator mass spectrometry radiocarbon (AMS 14C) dates ( n = 78) from human bone collagen were analyzed in the largest high-resolution chronology study to date at the ancient city of Teotihuacan in central Mexico (ca. AD 1–550). Samples originate from the residential neighborhood of La Ventilla, located in the heart of this major urban center. Here, a trapezoidal model using Bayesian statistics is built from 14C dates combined with data derived from the stylistic analysis of ceramics from burial contexts. Based on this model, we suggest possible refinements to Teotihuacan’s ceramic chronology, at least within the La Ventilla neighborhood. We also explore the abandonment and reoccupation of La Ventilla after the political collapse of Teotihuacan in the Metepec and Coyotlatelco phases. Findings suggest that these ceramic phases began earlier than is currently projected and that the well-documented abandonment period of La Ventilla may have occurred more abruptly than originally estimated. 
    more » « less