skip to main content


Title: The ProteomeXchange consortium in 2020: enabling ‘big data’ approaches in proteomics
Abstract The ProteomeXchange (PX) consortium of proteomics resources (http://www.proteomexchange.org) has standardized data submission and dissemination of mass spectrometry proteomics data worldwide since 2012. In this paper, we describe the main developments since the previous update manuscript was published in Nucleic Acids Research in 2017. Since then, in addition to the four PX existing members at the time (PRIDE, PeptideAtlas including the PASSEL resource, MassIVE and jPOST), two new resources have joined PX: iProX (China) and Panorama Public (USA). We first describe the updated submission guidelines, now expanded to include six members. Next, with current data submission statistics, we demonstrate that the proteomics field is now actively embracing public open data policies. At the end of June 2019, more than 14 100 datasets had been submitted to PX resources since 2012, and from those, more than 9 500 in just the last three years. In parallel, an unprecedented increase of data re-use activities in the field, including ‘big data’ approaches, is enabling novel research and new data resources. At last, we also outline some of our future plans for the coming years.  more » « less
Award ID(s):
1759980
NSF-PAR ID:
10184633
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Date Published:
Journal Name:
Nucleic Acids Research
ISSN:
0305-1048
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mass spectrometry (MS) is by far the most used experimental approach in high-throughput proteomics. The ProteomeXchange (PX) consortium of proteomics resources (http://www.proteomexchange.org) was originally set up to standardize data submission and dissemination of public MS proteomics data. It is now 10 years since the initial data workflow was implemented. In this manuscript, we describe the main developments in PX since the previous update manuscript in Nucleic Acids Research was published in 2020. The six members of the Consortium are PRIDE, PeptideAtlas (including PASSEL), MassIVE, jPOST, iProX and Panorama Public. We report the current data submission statistics, showcasing that the number of datasets submitted to PX resources has continued to increase every year. As of June 2022, more than 34 233 datasets had been submitted to PX resources, and from those, 20 062 (58.6%) just in the last three years. We also report the development of the Universal Spectrum Identifiers and the improvements in capturing the experimental metadata annotations. In parallel, we highlight that data re-use activities of public datasets continue to increase, enabling connections between PX resources and other popular bioinformatics resources, novel research and also new data resources. Finally, we summarise the current state-of-the-art in data management practices for sensitive human (clinical) proteomics data.

     
    more » « less
  2. Applying for grants from the National Science Foundation (NSF) requires a paradigm shift at many community and technical colleges, because the primary emphasis at two-year colleges is on teaching. This shift is necessary because of the NSF expectation that a STEM faculty member will lead the project as Principal Investigator. Preparing successful NSF grant proposals also requires knowledge, skills, and strategies that differ from other sources from which two-year colleges seek grant funding. Since 2012, the Mentor-Connect project has been working to build capacity among two-year colleges and leadership skills among their STEM faculty to help them prepare competitive grant proposals for the National Science Foundation’s Advanced Technological Education (NSF-ATE) program. NSF-ATE focuses on improving the education of technicians for advanced technology fields that drive the nation’s economy. As an NSF-ATE-funded initiative, Mentor-Connect has developed a three-pronged approach of mentoring, technical assistance, and digital resources to help potential grantees with the complexities of the proposal submission process. Grant funding makes it possible to provide this help at no cost to eligible, two-year college educators. Mentor-Connect support services for prospective grantees are available for those who are new to ATE (community or technical colleges that have not received an NSF ATE award in 7 or more years), those seeking a larger second grant from the ATE Program after completing a small, new-to-ATE project, and for those whose first or second grant proposal submission to the NSF ATE Program was declined (not funded). The Mentor-Connect project has succeeded in raising interest in the NSF-ATE program. Over a seven-year period more than 80% of the 143 participating colleges have submitted proposals. Overall, the funding rate among colleges that participated in the Mentor-Connect project is exceptionally high. Of the 97 New-to-ATE proposals submitted from Cohorts 1 through 6, 71 have been funded, for a funding rate of 73%. Mentor-Connect is also contributing to a more geographically and demographically diverse NSF-ATE program. To analyze longer-term impacts, the project’s evaluator is conducting campus site visits at the new-to-ATE grantee institutions as their initial ATE projects are being completed. A third-party researcher has contributed to the site-visit protocol being used by evaluators. The researcher is also analyzing the site-visit reports to harvest outcomes from this work. This paper shares findings from seven cohorts that have completed a grant cycle with funding results known, as well as qualitative data from site visits with the first two cohorts of grantees. Recommendations for further research are also included. 
    more » « less
  3. Applying for grants from the National Science Foundation (NSF) requires a paradigm shift at many community and technical colleges, because the primary emphasis at two-year colleges is on teaching. This shift is necessary because of the NSF expectation that a STEM faculty member will lead the project as Principal Investigator. Preparing successful NSF grant proposals also requires knowledge, skills, and strategies that differ from other sources from which two-year colleges seek grant funding. Since 2012, the Mentor-Connect project has been working to build capacity among two-year colleges and leadership skills among their STEM faculty to help them prepare competitive grant proposals for the National Science Foundation’s Advanced Technological Education (NSF-ATE) program. NSF-ATE focuses on improving the education of technicians for advanced technology fields that drive the nation’s economy. As an NSF-ATE-funded initiative, Mentor-Connect has developed a three-pronged approach of mentoring, technical assistance, and digital resources to help potential grantees with the complexities of the proposal submission process. Grant funding makes it possible to provide this help at no cost to eligible, two-year college educators. Mentor-Connect support services for prospective grantees are available for those who are new to ATE (community or technical colleges that have not received an NSF ATE award in 7 or more years), those seeking a larger second grant from the ATE Program after completing a small, new-to-ATE project, and for those whose first or second grant proposal submission to the NSF ATE Program was declined (not funded). The Mentor-Connect project has succeeded in raising interest in the NSF-ATE program. Over a seven-year period more than 80% of the 143 participating colleges have submitted proposals. Overall, the funding rate among colleges that participated in the Mentor-Connect project is exceptionally high. Of the 97 New-to-ATE proposals submitted from Cohorts 1 through 6, 71 have been funded, for a funding rate of 73%. Mentor-Connect is also contributing to a more geographically and demographically diverse NSF-ATE program. To analyze longer-term impacts, the project’s evaluator is conducting campus site visits at the new-to-ATE grantee institutions as their initial ATE projects are being completed. A third-party researcher has contributed to the site-visit protocol being used by evaluators. The researcher is also analyzing the site-visit reports to harvest outcomes from this work. This paper shares findings from seven cohorts that have completed a grant cycle with funding results known, as well as qualitative data from site visits with the first two cohorts of grantees. Recommendations for further research are also included. 
    more » « less
  4. Abstract

    Data independent acquisition (DIA) proteomics techniques have matured enormously in recent years, thanks to multiple technical developments in, for example, instrumentation and data analysis approaches. However, there are many improvements that are still possible for DIA data in the area of the FAIR (Findability, Accessibility, Interoperability and Reusability) data principles. These include more tailored data sharing practices and open data standards since public databases and data standards for proteomics were mostly designed with DDA data in mind. Here we first describe the current state of the art in the context of FAIR data for proteomics in general, and for DIA approaches in particular. For improving the current situation for DIA data, we make the following recommendations for the future: (i) development of an open data standard for spectral libraries; (ii) make mandatory the availability of the spectral libraries used in DIA experiments in ProteomeXchange resources; (iii) improve the support for DIA data in the data standards developed by the Proteomics Standards Initiative; and (iv) improve the support for DIA datasets in ProteomeXchange resources, including more tailored metadata requirements.

     
    more » « less
  5. Obeid, Iyad Selesnick (Ed.)
    Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEG channel separately. We use the hypotheses generated by the P1 model and create additional features that carry information about the detected events and their confidence. The P2 model uses these additional features and the LFCC features to learn the temporal and spatial aspects of the EEG signals using a hybrid convolutional neural network (CNN) and LSTM model. Finally, Phase 3 aggregates the results from both P1 and P2 before applying a final postprocessing step. The online system implements Phase 1 by taking advantage of the Linux piping mechanism, multithreading techniques, and multi-core processors. To convert Phase 1 into an online system, we divide the system into five major modules: signal preprocessor, feature extractor, event decoder, postprocessor, and visualizer. The system reads 0.1-second frames from each EEG channel and sends them to the feature extractor and the visualizer. The feature extractor generates LFCC features in real time from the streaming EEG signal. Next, the system computes seizure and background probabilities using a channel-based LSTM model and applies a postprocessor to aggregate the detected events across channels. The system then displays the EEG signal and the decisions simultaneously using a visualization module. The online system uses C++, Python, TensorFlow, and PyQtGraph in its implementation. The online system accepts streamed EEG data sampled at 250 Hz as input. The system begins processing the EEG signal by applying a TCP montage [8]. Depending on the type of the montage, the EEG signal can have either 22 or 20 channels. To enable the online operation, we send 0.1-second (25 samples) length frames from each channel of the streamed EEG signal to the feature extractor and the visualizer. Feature extraction is performed sequentially on each channel. The signal preprocessor writes the sample frames into two streams to facilitate these modules. In the first stream, the feature extractor receives the signals using stdin. In parallel, as a second stream, the visualizer shares a user-defined file with the signal preprocessor. This user-defined file holds raw signal information as a buffer for the visualizer. The signal preprocessor writes into the file while the visualizer reads from it. Reading and writing into the same file poses a challenge. The visualizer can start reading while the signal preprocessor is writing into it. To resolve this issue, we utilize a file locking mechanism in the signal preprocessor and visualizer. Each of the processes temporarily locks the file, performs its operation, releases the lock, and tries to obtain the lock after a waiting period. The file locking mechanism ensures that only one process can access the file by prohibiting other processes from reading or writing while one process is modifying the file [9]. The feature extractor uses circular buffers to save 0.3 seconds or 75 samples from each channel for extracting 0.2-second or 50-sample long center-aligned windows. The module generates 8 absolute LFCC features where the zeroth cepstral coefficient is replaced by a temporal domain energy term. For extracting the rest of the features, three pipelines are used. The differential energy feature is calculated in a 0.9-second absolute feature window with a frame size of 0.1 seconds. The difference between the maximum and minimum temporal energy terms is calculated in this range. Then, the first derivative or the delta features are calculated using another 0.9-second window. Finally, the second derivative or delta-delta features are calculated using a 0.3-second window [6]. The differential energy for the delta-delta features is not included. In total, we extract 26 features from the raw sample windows which add 1.1 seconds of delay to the system. We used the Temple University Hospital Seizure Database (TUSZ) v1.2.1 for developing the online system [10]. The statistics for this dataset are shown in Table 1. A channel-based LSTM model was trained using the features derived from the train set using the online feature extractor module. A window-based normalization technique was applied to those features. In the offline model, we scale features by normalizing using the maximum absolute value of a channel [11] before applying a sliding window approach. Since the online system has access to a limited amount of data, we normalize based on the observed window. The model uses the feature vectors with a frame size of 1 second and a window size of 7 seconds. We evaluated the model using the offline P1 postprocessor to determine the efficacy of the delayed features and the window-based normalization technique. As shown by the results of experiments 1 and 4 in Table 2, these changes give us a comparable performance to the offline model. The online event decoder module utilizes this trained model for computing probabilities for the seizure and background classes. These posteriors are then postprocessed to remove spurious detections. The online postprocessor receives and saves 8 seconds of class posteriors in a buffer for further processing. It applies multiple heuristic filters (e.g., probability threshold) to make an overall decision by combining events across the channels. These filters evaluate the average confidence, the duration of a seizure, and the channels where the seizures were observed. The postprocessor delivers the label and confidence to the visualizer. The visualizer starts to display the signal as soon as it gets access to the signal file, as shown in Figure 1 using the “Signal File” and “Visualizer” blocks. Once the visualizer receives the label and confidence for the latest epoch from the postprocessor, it overlays the decision and color codes that epoch. The visualizer uses red for seizure with the label SEIZ and green for the background class with the label BCKG. Once the streaming finishes, the system saves three files: a signal file in which the sample frames are saved in the order they were streamed, a time segmented event (TSE) file with the overall decisions and confidences, and a hypotheses (HYP) file that saves the label and confidence for each epoch. The user can plot the signal and decisions using the signal and HYP files with only the visualizer by enabling appropriate options. For comparing the performance of different stages of development, we used the test set of TUSZ v1.2.1 database. It contains 1015 EEG records of varying duration. The any-overlap performance [12] of the overall system shown in Figure 2 is 40.29% sensitivity with 5.77 FAs per 24 hours. For comparison, the previous state-of-the-art model developed on this database performed at 30.71% sensitivity with 6.77 FAs per 24 hours [3]. The individual performances of the deep learning phases are as follows: Phase 1’s (P1) performance is 39.46% sensitivity and 11.62 FAs per 24 hours, and Phase 2 detects seizures with 41.16% sensitivity and 11.69 FAs per 24 hours. We trained an LSTM model with the delayed features and the window-based normalization technique for developing the online system. Using the offline decoder and postprocessor, the model performed at 36.23% sensitivity with 9.52 FAs per 24 hours. The trained model was then evaluated with the online modules. The current performance of the overall online system is 45.80% sensitivity with 28.14 FAs per 24 hours. Table 2 summarizes the performances of these systems. The performance of the online system deviates from the offline P1 model because the online postprocessor fails to combine the events as the seizure probability fluctuates during an event. The modules in the online system add a total of 11.1 seconds of delay for processing each second of the data, as shown in Figure 3. In practice, we also count the time for loading the model and starting the visualizer block. When we consider these facts, the system consumes 15 seconds to display the first hypothesis. The system detects seizure onsets with an average latency of 15 seconds. Implementing an automatic seizure detection model in real time is not trivial. We used a variety of techniques such as the file locking mechanism, multithreading, circular buffers, real-time event decoding, and signal-decision plotting to realize the system. A video demonstrating the system is available at: https://www.isip.piconepress.com/projects/nsf_pfi_tt/resources/videos/realtime_eeg_analysis/v2.5.1/video_2.5.1.mp4. The final conference submission will include a more detailed analysis of the online performance of each module. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation Partnership for Innovation award number IIP-1827565 and the Pennsylvania Commonwealth Universal Research Enhancement Program (PA CURE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” J. Neural Eng., vol. 16, no. 3, p. 031001, 2019. https://doi.org/10.1088/1741-2552/ab0ab5. [2] A. C. Bridi, T. Q. Louro, and R. C. L. Da Silva, “Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients,” Rev. Lat. Am. Enfermagem, vol. 22, no. 6, p. 1034, 2014. https://doi.org/10.1590/0104-1169.3488.2513. [3] M. Golmohammadi, V. Shah, I. Obeid, and J. Picone, “Deep Learning Approaches for Automatic Seizure Detection from Scalp Electroencephalograms,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York, New York, USA: Springer, 2020, pp. 233–274. https://doi.org/10.1007/978-3-030-36844-9_8. [4] “CFM Olympic Brainz Monitor.” [Online]. Available: https://newborncare.natus.com/products-services/newborn-care-products/newborn-brain-injury/cfm-olympic-brainz-monitor. [Accessed: 17-Jul-2020]. [5] M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, and A. I. Bagic, “Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset,” J. Clin. Neurophysiol., 2020. https://doi.org/10.1097/WNP.0000000000000709. [6] A. Harati, M. Golmohammadi, S. Lopez, I. Obeid, and J. Picone, “Improved EEG Event Classification Using Differential Energy,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, 2015, pp. 1–4. https://doi.org/10.1109/SPMB.2015.7405421. [7] V. Shah, C. Campbell, I. Obeid, and J. Picone, “Improved Spatio-Temporal Modeling in Automated Seizure Detection using Channel-Dependent Posteriors,” Neurocomputing, 2021. [8] W. Tatum, A. Husain, S. Benbadis, and P. Kaplan, Handbook of EEG Interpretation. New York City, New York, USA: Demos Medical Publishing, 2007. [9] D. P. Bovet and C. Marco, Understanding the Linux Kernel, 3rd ed. O’Reilly Media, Inc., 2005. https://www.oreilly.com/library/view/understanding-the-linux/0596005652/. [10] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Front. Neuroinform., vol. 12, pp. 1–6, 2018. https://doi.org/10.3389/fninf.2018.00083. [11] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. https://dl.acm.org/doi/10.5555/1953048.2078195. [12] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure detection in the newborn: Methods and initial evaluation,” Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 3, pp. 356–362, 1997. https://doi.org/10.1016/S0013-4694(97)00003-9. 
    more » « less