skip to main content

Title: Device-quality, reconfigurable metamaterials from shape-directed nanocrystal assembly

Anchoring nanoscale building blocks, regardless of their shape, into specific arrangements on surfaces presents a significant challenge for the fabrication of next-generation chip-based nanophotonic devices. Current methods to prepare nanocrystal arrays lack the precision, generalizability, and postsynthetic robustness required for the fabrication of device-quality, nanocrystal-based metamaterials [Q. Y. Lin et al. Nano Lett. 15, 4699–4703 (2015); V. Flauraud et al., Nat. Nanotechnol. 12, 73–80 (2017)]. To address this challenge, we have developed a synthetic strategy to precisely arrange any anisotropic colloidal nanoparticle onto a substrate using a shallow-template-assisted, DNA-mediated assembly approach. We show that anisotropic nanoparticles of virtually any shape can be anchored onto surfaces in any desired arrangement, with precise positional and orientational control. Importantly, the technique allows nanoparticles to be patterned over a large surface area, with interparticle distances as small as 4 nm, providing the opportunity to exploit light–matter interactions in an unprecedented manner. As a proof-of-concept, we have synthesized a nanocrystal-based, dynamically tunable metasurface (an anomalous reflector), demonstrating the potential of this nanoparticle-based metamaterial synthesis platform.

; ; ; ; ; ; ;
Publication Date:
Journal Name:
Proceedings of the National Academy of Sciences
Page Range or eLocation-ID:
p. 21052-21057
Proceedings of the National Academy of Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As devices approach the single-nanoparticle scale, the rational assembly of nanomaterial heterojunctions remains a persistent challenge. While optical traps can manipulate objects in three dimensions, to date, nanoscale materials have been trapped primarily in aqueous solvents or vacuum. Here, we demonstrate the use of optical traps to manipulate, align, and assemble metal-seeded nanowire building blocks in a range of organic solvents. Anisotropic radiation pressure generates an optical torque that orients each nanowire, and subsequent trapping of aligned nanowires enables deterministic fabrication of arbitrarily long heterostructures of periodically repeating bismuth-nanocrystal/germanium-nanowire junctions. Heat transport calculations, back-focal-plane interferometry, and optical images reveal that the bismuth nanocrystal melts during trapping, facilitating tip-to-tail “nanosoldering” of the germanium nanowires. These bismuth-semiconductor interfaces may be useful for quantum computing or thermoelectric applications. In addition, the ability to trap nanostructures in oxygen- and water-free organic media broadly expands the library of materials available for optical manipulation and single-particle spectroscopy.

  2. Smart structures with actuation function are desired for aerospace applications, including morphing airfoils, deployable structures and more. While shape memory alloys and piezoelectric ceramics and polymers are currently a popular smart material options for such applications, magnetoelastomers (MEs) can be uniquely actuated with application of non-contact magnetic field. Magnetoelastomers (MEs), composite materials made of magnetic particles and soft, non-magnetic matrix, can potentially contribute to such smart structures as a light-weight, smart material option with large strain change, fast response time (milliseconds) and anisotropic actuation properties. Other than aerospace applications, MEs, as soft actuators, have been investigated for flexible electronics, soft robotics, and biomedical applications. Anisotropic actuation properties of MEs can be controlled with particle organization within the elastomer. To provide this control, parametric studies on fabrication of MEs need to be performed. This study presents experimental work on nanoparticle organization within MEs using uniaxial, biaxial and triaxial magnetic fields and on the structure-property relationships of MEs. Iron oxide nanoparticles were used as a model nanofillers, and their surfaces were treated with silane coupling agent to improve dispersion and suspension within a polydimethylsiloxane (PDMS) elastomer. The fabricated MEs were inspected using microCT, and their anisotropic susceptibilities are being measured.
  3. Abstract

    Synthesizing patchy particles with predictive control over patch size, shape, placement and number has been highly sought-after for nanoparticle assembly research, but is fraught with challenges. Here we show that polymers can be designed to selectively adsorb onto nanoparticle surfaces already partially coated by other chains to drive the formation of patchy nanoparticles with broken symmetry. In our model system of triangular gold nanoparticles and polystyrene-b-polyacrylic acid patch, single- and double-patch nanoparticles are produced at high yield. These asymmetric single-patch nanoparticles are shown to assemble into self-limited patch‒patch connected bowties exhibiting intriguing plasmonic properties. To unveil the mechanism of symmetry-breaking patch formation, we develop a theory that accurately predicts our experimental observations at all scales—from patch patterning on nanoparticles, to the size/shape of the patches, to the particle assemblies driven by patch‒patch interactions. Both the experimental strategy and theoretical prediction extend to nanoparticles of other shapes such as octahedra and bipyramids. Our work provides an approach to leverage polymer interactions with nanoscale curved surfaces for asymmetric grafting in nanomaterials engineering.

  4. Silica nanomaterials have been studied based on their potential applications in a variety of fields, including biomedicine and agriculture. A number of different molecules have been condensed onto silica nanoparticles’ surfaces to present the surface chemistry needed for a given application. Among those molecules, (3-aminopropyl)triethoxysilane (APS) is one of the most commonly applied silanes used for nanoparticle surface functionalization to achieve charge reversal as well as to enable cargo loading. However, the colloidal stability of APS-functionalized silica nanoparticles has not been thoroughly studied, which can be problematic when the high reactivity of amine groups is considered. In this study, four different types of silica nanoparticles with varied location of added APS have been prepared via a reverse micro emulsion process, and their colloidal stability and dissolution behavior have been investigated. Systematic characterization has been accomplished using transmission electron microscopy (TEM), silicomolybdic acid (SMA) spectrophotometric assay, nitrogen adsorption–desorption surface area measurement, and aerosol ion mobility-mass spectrometry to track the nanoparticles’ physical and chemical changes during dissolution. We find that when APS is on the interior of the silica nanoparticle, it facilitates dissolution, but when APS is condensed both on the interior and exterior, only the exterior siloxane bonds experience catalytic hydrolysis,more »and the interior dissolution is dramatically suppressed. The observation and analyses that silica nanoparticles show different hydrolysis behaviors dependent on the location of the functional group will be important in future design of silica nanoparticles for specific biomedical and agricultural applications.« less
  5. Colloidal nanoparticles have been widely studied and proven to have unique and superior properties compared to their bulk form and are attractive building blocks for diverse technologies, including energy conversion and storage, sensing, electronics, etc. However, transforming colloidal nanoparticles into functional devices while translating their unique properties from the nanoscale to the macroscale remains a major challenge. The development of advanced manufacturing methodologies that can convert functional nanomaterials into high-performance devices in a scalable, controllable and affordable manner presents great research opportunities and challenges for the next several decades. One promising approach to fabricate functional devices from nanoscale building blocks is additive manufacturing, such as 2D and 3D printing, owing to their capability of fast prototyping and versatile fabrication. Here, we review recent progress and methodologies for printing functional devices using colloidal nanoparticle inks with an emphasis on 2D nanomaterial-based inks. This review provides a comprehensive overview on four important and interconnected topics, including nanoparticle synthesis, ink formulation, printing methods, and device applications. New research opportunities as well as future directions are also discussed.