skip to main content


Title: The motley drivers of heat and cold exposure in 21st century US cities

We use a suite of decadal-length regional climate simulations to quantify potential changes in population-weighted heat and cold exposure in 47 US metropolitan regions during the 21st century. Our results show that population-weighted exposure to locally defined extreme heat (i.e., “population heat exposure”) would increase by a factor of 12.7–29.5 under a high-intensity greenhouse gas (GHG) emissions and urban development pathway. Additionally, end-of-century population cold exposure is projected to rise by a factor of 1.3–2.2, relative to start-of-century population cold exposure. We identify specific metropolitan regions in which population heat exposure would increase most markedly and characterize the relative significance of various drivers responsible for this increase. The largest absolute changes in population heat exposure during the 21st century are projected to occur in major US metropolitan regions like New York City (NY), Los Angeles (CA), Atlanta (GA), and Washington DC. The largest relative changes in population heat exposure (i.e., changes relative to start-of-century) are projected to occur in rapidly growing cities across the US Sunbelt, for example Orlando (FL), Austin (TX), Miami (FL), and Atlanta. The surge in population heat exposure across the Sunbelt is driven by concurrent GHG-induced warming and population growth which, in tandem, could strongly compound population heat exposure. Our simulations provide initial guidance to inform the prioritization of urban climate adaptation measures and policy.

 
more » « less
NSF-PAR ID:
10184679
Author(s) / Creator(s):
; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
35
ISSN:
0027-8424
Page Range / eLocation ID:
p. 21108-21117
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Climate change and global urbanization have often been anticipated to increase future population exposure (frequency and intensity) to extreme weather over the coming decades. Here we examine how changes in urban land extent, population, and climate will respectively and collectively affect spatial patterns of future population exposures to climate extremes (including hot days, cold days, heavy rainfalls, and severe thunderstorm environments) across the continental U.S. at the end of the 21st century. Different from common impressions, we find that urban land patterns can sometimes reduce rather than increase population exposures to climate extremes, even heat extremes, and that spatial patterns instead of total quantities of urban land are more influential to population exposures. Our findings lead to preliminary suggestions for embedding long-term climate resilience in urban and regional land-use system designs, and strongly motivate searches for optimal spatial urban land patterns that can robustly moderate population exposures to climate extremes throughout the 21st century.

     
    more » « less
  2. The Arkansas River and its tributaries provide critical water resources for agricultural irrigation, hydropower generation, and public water supply in the Arkansas River Basin (ARB). However, climate change and other environmental factors have imposed significant impacts on regional hydrological processes, resulting in widespread ecological and economic consequences. In this study, we projected future river flow patterns in the 21st century across the entire ARB under two climate and socio-economic change scenarios (i.e., SSP2-RCP45 and SSP5-RCP85) using the process-based Dynamic Land Ecosystem Model (DLEM). We designed “baseline simulations” (all driving factors were kept constant at the level circa 2000) and “environmental change simulations” (at least one driving factor changed over time during 2001–2099) to simulate the inter-annual variations of river flow and quantify the contributions of four driving factors (i.e., climate change, CO2 concentration, atmospheric nitrogen deposition, and land use change). Results showed that the Arkansas River flow in 2080–2099 would decrease by 12.1% in the SSP2-RCP45 and 27.9% in the SSP5-RCP85 compared to that during 2000–2019. River flow decline would occur from the beginning to the middle of this century in the SSP2-RCP45 and happen throughout the entire century in the SSP5-RCP85. All major rivers in the ARB would experience river flow decline with the largest percentage reduction in the western and southwestern ARB. Warming and drying climates would account for 77%–95% of the reduction. The rising CO2 concentration would exacerbate the decline through increasing foliage area and ecosystem evapotranspiration. This study provides insight into the spatial patterns of future changes in water availability in the ARB and the underlying mechanisms controlling these changes. This information is critical for designing watershed-specific management strategies to maintain regional water resource sustainability and mitigate the adverse impacts of climate changes on water availability. 
    more » « less
  3. Abstract

    The air temperature cooling impacts of infrastructure-based adaptation measures in expanding urban areas and under changing climatic conditions are not well understood. We present simulations conducted with the Weather Research and Forecasting (WRF) model, coupled to a multi-layer urban model that explicitly resolves pedestrian-level conditions. Our simulations dynamically downscale global climate projections, account for projected urban growth, and examine cooling impacts of extensive cool roof deployment in Atlanta, Detroit, and Phoenix (USA). The simulations focus on heatwave events that are representative of start-, middle-, and end-of-century climatic conditions. Extensive cool roof implementation is projected to cause a maximum city-averaged daytime air temperature cooling of 0.38 °C in Atlanta; 0.42 °C in Detroit; and 0.66 °C in Phoenix. We propose a means for practitioners to estimate the impact of cool roof treatments on pedestrian-level air temperature, for a chosen roof reflectivity, with a new metric called the Albedo Cooling Effectiveness (ACE). The ACE metric reveals that, on average, cool roofs in Phoenix are 11% more effective at lowering pedestrian-level air temperature than in Atlanta, and 30% more effective than in Detroit. Cool roofs remain similarly effective under future heatwaves relative to contemporary heatwaves for Atlanta and Detroit, with some indication of increased effectiveness under future heatwaves for Phoenix. By highlighting the underlying factors that drive cooling effectiveness in a trio of cities located in different climatic regions, we demonstrate a robust framework for estimating the pedestrian-level cooling impacts associated with reflective roofs without the need for computationally demanding simulations.

     
    more » « less
  4. Abstract

    To better understand the role projected land‐use changes (LUCs) may play in future regional climate projections, we assess the combined effects of greenhouse‐gas (GHG)‐forced climate change and LUCs in regional climate model (RCM) simulations. To do so, we produced RCM simulations that are complementary to the North‐American Coordinated Regional Downscaling Experiment (NA‐CORDEX) simulations, but with future LUCs that are consistent with particular Shared Socioeconomic Pathways (SSPs) and related to a specific Representative Concentration Pathway (RCP). We examine the state of the climate at the end of the 21st century with and without two urban and agricultural LUC scenarios that follow SSP3 and SSP5 using the Weather Research and Forecasting (WRF) model forced by one global climate model, the MPI‐ESM, under the RCP8.5 scenario. We find that LUCs following different societal trends under the SSPs can significantly affect climate projections in different ways. In regions of significant cropland expansion over previously forested area, projected annual mean temperature increases are diminished by around 0.5°C–1.0°C. Across all seasons, where urbanization is high, projected temperature increases are magnified. In particular, summer mean temperature projections are up to 4°C–5°C greater and minimum and maximum temperature projections are increased by 2.5°C–6°C, amounts that are on par with the warming due to GHG‐forced climate change. Warming is also enhanced in the urban surroundings. Future urbanization also has a large influence on precipitation projections during summer, increasing storm intensity, event length, and the overall amount over urbanized areas, and decreasing precipitation in surrounding areas.

     
    more » « less
  5. Abstract

    Many urban climates are characterized by increased temperature and decreased relative humidity, under climate change and compared to surrounding rural landscapes. The two trends have contrasting effects on human-perceived heat stress. However, their combined impact on urban humid heat and adaptation has remained largely unclear. Here, we use simulations from an earth system model to investigate how urbanization coupled with climate change affects urban humid heat stress, exposure, and adaptation. Our results show that urban humid heat will increase substantially across the globe by 3.1 °C by the end of the century under a high emission scenario. This projected trend is largely attributed to climate change-driven increases in specific humidity (1.8 °C), followed by air temperature (1.4 °C)—with urbanization impacts varying by location and of a smaller magnitude. Urban humid heat stress is projected to be concentrated in coastal, equatorial areas. At least 44% of the projected urban population in 2100, the equivalent of over 3 billion people worldwide, is projected to be living in an urban area with high humid heat stress. We show a critical, climate-driven dilemma between cooling efficacy and water limitation of urban greenery-based heat adaptation. Insights from our study emphasize the importance of using urban-explicit humid heat measures for more accurate assessments of urban heat exposure and invite careful evaluation of the feasibility of green infrastructure as a long-term cooling strategy.

     
    more » « less