skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A supergene-linked estrogen receptor drives alternative phenotypes in a polymorphic songbird
Behavioral evolution relies on genetic changes, yet few behaviors can be traced to specific genetic sequences in vertebrates. Here we provide experimental evidence showing that differentiation of a single gene has contributed to the evolution of divergent behavioral phenotypes in the white-throated sparrow, a common backyard songbird. In this species, a series of chromosomal inversions has formed a supergene that segregates with an aggressive phenotype. The supergene has capturedESR1, the gene that encodes estrogen receptor α (ERα); as a result, this gene is accumulating changes that now distinguish the supergene allele from the standard allele. Our results show that in birds of the more aggressive phenotype, ERα knockdown caused a phenotypic change to that of the less aggressive phenotype. We next showed that in a free-living population, aggression is predicted by allelic imbalance favoring the supergene allele. Finally, we identifiedcis-regulatory features, both genetic and epigenetic, that explain the allelic imbalance. This work provides a rare illustration of how genotypic divergence has led to behavioral phenotypic divergence in a vertebrate.  more » « less
Award ID(s):
1656247
PAR ID:
10184680
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
35
ISSN:
0027-8424
Page Range / eLocation ID:
p. 21673-21680
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Cryptic genetic variants exert minimal or no phenotypic effects alone but have long been hypothesized to form a vast, hidden reservoir of genetic diversity that drives trait evolvability through epistatic interactions. This classical theory has been reinvigorated by pan-genome sequencing, which has revealed pervasive variation within gene families and regulatory networks, including extensive cis-regulatory changes, gene duplication, and divergence between paralogs. Nevertheless, empirical testing of cryptic variation’s capacity to fuel phenotypic diversification has been hindered by intractable genetics, limited allelic diversity, and inadequate phenotypic resolution. Here, guided by natural and engineered cis-regulatory cryptic variants in a recently evolved paralogous gene pair, we identified an additional pair of redundant trans regulators, establishing a regulatory network that controls tomato inflorescence architecture. By combining coding mutations with a cis-regulatory allelic series in populations segregating for all four network genes, we systematically constructed a collection of 216 genotypes spanning the full spectrum of inflorescence complexity and quantified branching in over 27,000 inflorescences. Analysis of the resulting high-resolution genotype-phenotype map revealed a layer of dose-dependent interactions within paralog pairs that enhances branching, culminating in strong, synergistic effects. However, we also uncovered an unexpected layer of antagonism between paralog pairs, where accumulating mutations in one pair progressively diminished the effects of mutations in the other. Our results demonstrate how gene regulatory network architecture and complex dosage effects from paralog diversification converge to shape phenotypic space under a hierarchical model of epistatic interactions. Given the prevalence of paralog evolution in genomes, we propose that paralogous cryptic variation within regulatory networks elicits hierarchies of epistatic interactions, catalyzing bursts of phenotypic change. Keyword:cryptic mutations, paralogs, redundancy, cis-regulatory, tomato, inflorescence, gene regulatory network, modeling, epistasis 
    more » « less
  2. Abstract The fire antSolenopsis invictaexists in two alternate social forms: monogyne nests contain a single reproductive queen and polygyne nests contain multiple reproductive queens. This colony‐level social polymorphism corresponds with individual differences in queen physiology, queen dispersal patterns and worker discrimination behaviours, all evidently regulated by an inversion‐based supergene that spans more than 13 Mb of a “social chromosome,” contains over 400 protein‐coding genes and rarely undergoes recombination. The specific mechanisms by which this supergene influences expression of the many distinctive features that characterize the alternate forms remain almost wholly unknown. To advance our understanding of these mechanisms, we explore the effects of social chromosome genotype and natal colony social form on gene expression in queens sampled as they embarked on nuptial flights, using RNA‐sequencing of brains and ovaries. We observe a large effect of natal social form, that is, of the social/developmental environment, on gene expression profiles, with similarly substantial effects of genotype, including: (a) supergene‐associated gene upregulation, (b) allele‐specific expression and (c) pronounced extra‐supergenetrans‐regulatory effects. These findings, along with observed spatial variation in differential and allele‐specific expression within the supergene region, highlight the complex gene regulatory landscape that emerged following divergence of the inversion‐mediatedSbhaplotype from its homologue, which presumably largely retained the ancestral gene order. The distinctive supergene‐associated gene expression trajectories we document at the onset of a queen’s reproductive life expand the known record of relevant molecular correlates of a complex social polymorphism and point to putative genetic factors underpinning the alternate social syndromes. 
    more » « less
  3. Abstract Most supergenes discovered so far are young, occurring in one species or a few closely related species. An ancient supergene in the ant genusFormicapresents an unusual opportunity to compare supergene‐associated phenotypes and the factors that influence the persistence of polymorphism in different species. We investigate the genetic architecture of social organization inFormica francoeuri, an ant species native to low‐ and mid‐elevation semiarid regions of southern California, and describe an efficient technique for estimating mode of social organization using population genomic data. Using this technique, we show thatF. francoeuriexhibits polymorphism in colony social organization and that the phenotypic polymorphism is strongly associated with genotypes within theFormicasocial supergene region. The distribution of supergene haplotypes inF. francoeuridiffers from that of related speciesFormica selysiin that colonies with multiple queens contain almost exclusively workers that are heterozygous for alternative supergene haplotypes. Moreover, heterozygous workers exhibit allele‐specific expression of the polygyne‐associated haplotype at the candidate geneKnockout,which is thought to influence social organization. We also report geographic population structure and variation in worker size across a large fraction of the species range. Our results suggest that, although theFormicasupergene is conserved within the genus, the mechanisms that maintain the supergene and its associated polymorphisms differ among species. 
    more » « less
  4. Epistasis between genes is traditionally studied with mutations that eliminate protein activity, but most natural genetic variation is in cis-regulatory DNA and influences gene expression and function quantitatively. In this study, we used natural and engineered cis-regulatory alleles in a plant stem-cell circuit to systematically evaluate epistatic relationships controlling tomato fruit size. Combining a promoter allelic series with two other loci, we collected over 30,000 phenotypic data points from 46 genotypes to quantify how allele strength transforms epistasis. We revealed a saturating dose-dependent relationship but also allele-specific idiosyncratic interactions, including between alleles driving a step change in fruit size during domestication. Our approach and findings expose an underexplored dimension of epistasis, in which cis-regulatory allelic diversity within gene regulatory networks elicits nonlinear, unpredictable interactions that shape phenotypes. 
    more » « less
  5. Abstract Cryptic genetic variants exert minimal phenotypic effects alone but are hypothesized to form a vast reservoir of genetic diversity driving trait evolvability through epistatic interactions1–3. This classical theory has been reinvigorated by pan-genomics, which is revealing pervasive variation within gene families,cis-regulatory regions and regulatory networks4–6. Testing the ability of cryptic variation to fuel phenotypic diversification has been hindered by intractable genetics, limited allelic diversity and inadequate phenotypic resolution. Here, guided by natural and engineeredcis-regulatory cryptic variants in a paralogous gene pair, we identified additional redundanttransregulators, establishing a regulatory network controlling tomato inflorescence architecture. By combining coding mutations withcis-regulatory alleles in populations segregating for all four network genes, we generated 216 genotypes spanning a wide spectrum of inflorescence complexity and quantified branching in over 35,000 inflorescences. Analysis of this high-resolution genotype–phenotype map using a hierarchical model of epistasis revealed a layer of dose-dependent interactions within paralogue pairs enhancing branching, culminating in strong, synergistic effects. However, we also identified a layer of antagonism between paralogue pairs, whereby accumulating mutations in one pair progressively diminished the effects of mutations in the other. Our results demonstrate how gene regulatory network architecture and complex dosage effects from paralogue diversification converge to shape phenotypic space, producing the potential for both strongly buffered phenotypes and sudden bursts of phenotypic change. 
    more » « less