Introduction Social media has created opportunities for children to gather social support online (Blackwell et al., 2016; Gonzales, 2017; Jackson, Bailey, & Foucault Welles, 2018; Khasawneh, Rogers, Bertrand, Madathil, & Gramopadhye, 2019; Ponathil, Agnisarman, Khasawneh, Narasimha, & Madathil, 2017). However, social media also has the potential to expose children and adolescents to undesirable behaviors. Research showed that social media can be used to harass, discriminate (Fritz & Gonzales, 2018), dox (Wood, Rose, & Thompson, 2018), and socially disenfranchise children (Page, Wisniewski, Knijnenburg, & Namara, 2018). Other research proposes that social media use might be correlated to the significant increase in suicide rates and depressive symptoms among children and adolescents in the past ten years (Mitchell, Wells, Priebe, & Ybarra, 2014). Evidence based research suggests that suicidal and unwanted behaviors can be promulgated through social contagion effects, which model, normalize, and reinforce self-harming behavior (Hilton, 2017). These harmful behaviors and social contagion effects may occur more frequently through repetitive exposure and modelling via social media, especially when such content goes “viral” (Hilton, 2017). One example of viral self-harming behavior that has generated significant media attention is the Blue Whale Challenge (BWC). The hearsay about this challenge is that individuals at allmore »
Let's Talk about Sext: How Adolescents Seek Support and Advice about Their Online Sexual Experiences
We conducted a thematic content analysis of 4,180 posts by adolescents (ages 12-17) on an online peer support mental health forum to understand what and how adolescents talk about their online sexual interactions. Youth used the platform to seek support (83%), connect with others (15%), and give advice (5%) about sexting, their sexual orientation, sexual abuse, and explicit content. Females often received unwanted nudes from strangers and struggled with how to turn down sexting requests from people they knew. Meanwhile, others who sought support complained that they received unwanted sexual solicitations while doing so—to the point that adolescents gave advice to one another on which users to stay away from. Our research provides insight into the online sexual experiences of adolescents and how they seek support around these issues. We discuss how to design peer-based social media platforms to support the well-being and safety of youth.
- Publication Date:
- NSF-PAR ID:
- 10184746
- Journal Name:
- Let’s Talk about Sext: How Teens Seek Support and Advice for Online Sexual Interactions
- Page Range or eLocation-ID:
- 1 to 13
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We licensed a dataset from a mental health peer support platform catering mainly to teens and young adults. We anonymized the name of this platform to protect the individuals on our dataset. On this platform, users can post content and comment on others’ posts. Interactions are semi-anonymous: users share a photo and screen name with others. They have the option to post with their username visible or anonymously. The platform is moderated, but the ratio of moderators to posters is low (0.00007). The original dataset included over 5 million posts and 15 million comments from 2011- 2017. It was scaled to a feasible size for qualitative analysis by running a query to identify posts by a) adolescents aged 13-17 that were seeking support for b) online sexual experiences (not offline) with people they know (not strangers).
-
We collected Instagram Direct Messages (DMs) from 100 adolescents and young adults (ages 13-21) who then flagged their own conversations as safe or unsafe. We performed a mixed-method analysis of the media files shared privately in these conversations to gain human-centered insights into the risky interactions experienced by youth. Unsafe conversations ranged from unwanted sexual solicitations to mental health related concerns, and images shared in unsafe conversations tended to be of people and convey negative emotions, while those shared in regular conversations more often conveyed positive emotions and contained objects. Further, unsafe conversations were significantly shorter, suggesting that youth disengaged when they felt unsafe. Our work uncovers salient characteristics of safe and unsafe media shared in private conversations and provides the foundation to develop automated systems for online risk detection and mitigation.
-
As adolescents' engagement increases online, it becomes more essential to provide a safe environment for them. Although some apps and systems are available for keeping teens safer online, these approaches and apps do not consider the needs of parents and teens. We would like to improve adolescent online sexual risk detection algorithms. In order to do so, I'll conduct three research studies for my dissertation: 1) Qualitative analysis on teens posts on an online peer support platform about online sexual risks in order to gain deep understanding of online sexual risks 2) Train a machine learning approach to detect sexual risks based on teens conversations with sex offenders 3) develop a machine learning algorithm for detecting online sexual risks specialized for adolescents.
-
Cyberbullying has become one of the most pressing online risks for adolescents and has raised serious concerns in society. Traditional efforts are primarily devoted to building a single generic classification model for all users to differentiate bullying behaviors from the normal content [6, 3, 1, 2, 4]. Despite its empirical success, these models treat users equally and inevitably ignore the idiosyncrasies of users. Recent studies from psychology and sociology suggest that the occurrence of cyberbullying has a strong connection with the personality of victims and bullies embedded in the user-generated content, and the peer influence from like-minded users. In this paper, we propose a personalized cyberbullying detection framework PI-Bully with peer influence in a collaborative environment to tailor the prediction for each individual. In particular, the personalized classifier of each individual consists of three components: a global model that captures the commonality shared by all users, a personalized model that expresses the idiosyncratic personality of each specific user, and a third component that encodes the peer influence received from like-minded users. Most of the existing methods adopt a two-stage approach: they first apply feature engineering to capture the cyberbullying patterns and then employ machine learning classifiers to detect cyberbullying behaviors.more »