skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Iodine-mediated photoATRP in aqueous media with oxygen tolerance
Water is an environmentally friendly medium for conducting reversible deactivation radical polymerizations. In this paper, we report the investigation of iodine-mediated photocontrolled atom transfer radical polymerization (photoATRP) in aqueous media. The iodine-based initiator was generated by an in situ halogen exchange from a commercially available bromine-based initiator, ethyl α-bromophenylacetate, using different iodide salts. Fast and well-controlled polymerization of a water-soluble methacrylate monomer was achieved in water under visible light irradiation, including blue, green and yellow lights. The nature of the reaction medium greatly affected the kinetics and control over the growth of polymers. Polymerizations in water resulted in a well-controlled reaction that provided high monomer conversion and polymers with low dispersities, whereas control over the polymerization was poor in bulk or in an organic solvent, N , N -dimethylformamide. Polymerizations were performed over a wide range of visible light in the absence of any photocatalyst. The selection of water as a reaction medium enabled use of iodide salts without the need for solubilizing agents. Moreover, iodine-mediated photoATRP was successfully performed in the presence of residual oxygen, signifying the potential of this polymerization system to tolerate oxygen without performing deoxygenation processes.  more » « less
Award ID(s):
1707490
PAR ID:
10184901
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Polymer Chemistry
Volume:
11
Issue:
4
ISSN:
1759-9954
Page Range / eLocation ID:
843 to 848
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Photoinduced initiators for continuous activator regeneration atom transfer radical polymerization (PICAR ATRP) using sodium pyruvate and blue light (λmax = 456 nm) is reported. Water‐soluble oligo(ethylene oxide) methyl ether methacrylate (OEOMA500) was polymerized under biologically relevant conditions. Polymerizations were conducted with 1000 ppm (with respect to the monomer) concentrations of CuBr2, tris(2‐pyridylmethyl)amine, and 1000 ppm or less FeCl3as a cocatalyst in water. Well‐defined polymers with up to 90% monomer conversion, high molecular weights (Mn > 190,000), and low dispersity (1.14 < Ð < 1.19) were synthesized in less than 60 min. The polymerization rate and dispersity were tuned by varying the concentration of sodium pyruvate (SP), iron, and supporting halide, as well as light intensity. The Cu/Fe dual catalysis provided oxygen tolerance enabling rapid, well‐controlled, aqueous PICAR ATRP of OEOMA500without deoxygenation. 
    more » « less
  2. null (Ed.)
    ATRP (atom transfer radical polymerization) is one of the most robust reversible deactivation radical polymerization (RDRP) systems. However, the limited oxygen tolerance of conventional ATRP impedes its practical use in an ambient atmosphere. In this work, we developed a fully oxygen-tolerant PICAR (photoinduced initiators for continuous activator regeneration) ATRP process occurring in both water and organic solvents in an open reaction vessel. Continuous regeneration of the oxidized form of the copper catalyst with sodium pyruvate through UV excitation allowed the chemical removal of oxygen from the reaction mixture while maintaining a well-controlled polymerization of N -isopropylacrylamide (NIPAM) or methyl acrylate (MA) monomers. The polymerizations of NIPAM were conducted with 250 ppm (with respect to the monomer) or lower concentrations of CuBr 2 and a tris[2-(dimethylamino)ethyl]amine ligand. The polymers were synthesized to nearly quantitative monomer conversions (>99%), high molecular weights ( M n > 270 000), and low dispersities (1.16 < Đ < 1.44) in less than 30 min under biologically relevant conditions. The reported method provided a well-controlled ATRP ( Đ = 1.16) of MA in dimethyl sulfoxide despite oxygen diffusion from the atmosphere into the reaction system. 
    more » « less
  3. Abstract An orthogonal combination of cationic and radical RAFT polymerizations is used to synthesize bottlebrush polymers using two distinct RAFT agents. Selective consumption of the first RAFT agent is used to control the cationic RAFT polymerization of a vinyl ether monomer bearing a secondary dormant RAFT agent, which subsequently allows side‐chain polymers to be grafted from the pendant RAFT agent by a radical‐mediated RAFT polymerization of a different monomer, thus completing the synthesis of bottlebrush polymers. The high efficiency and selectivity of the cationic and radical RAFT polymerizations allow both polymerizations to be conducted in one‐pot tandem without intermediate purification. 
    more » « less
  4. Abstract The photophysical process of localized surface plasmon resonance (LSPR) is, for the first time, exploited for broadband photon harvesting in photo‐regulated controlled/living radical polymerization. Efficient macromolecular synthesis was achieved under illumination with light wavelengths extending from the visible to the near‐infrared regions. Plasmonic Ag nanostructures were in situ generated on Ag3PO4photocatalysts in a reversible addition‐fragmentation chain transfer (RAFT) system, thereby promoting polymerization of various monomers following a LSPR‐mediated electron transfer mechanism. Owing to the LSPR‐enhanced broadband photon harvesting, high monomer conversion (>99 %) was achieved under natural sunlight within 0.8 h. The deep penetration of NIR light enabled successful polymerization with reaction vessels screened by opaque barriers. Moreover, by trapping active oxygen species generated in the photocatalytic process, polymerization could be implemented without pre‐deoxygenation. 
    more » « less
  5. Abstract Photomediated Atom Transfer Radical Polymerization (photoATRP) is an activator regeneration method, which allows for the controlled synthesis of well‐defined polymers via light irradiation. Traditional photoATRP is often limited by the need for high‐energy ultraviolet or violet light. These could negatively affect the control and selectivity of the polymerization, promote side reactions, and may not be applicable to biologically relevant systems. This drawback can be circumvented by an introduction of the catalytic amount of photocatalysts, which absorb visible and/or NIR light and, therefore, controlled, regenerative ATRP can be performed with the dual‐catalytic cycle. Herein, a critical summary of recent developments in the field of dual‐catalysis concerning Cu‐catalyzed ATRP is provided. Contributions of involved species are examined mechanistically, followed by challenges and future directions towards the next generation of advanced functional macromolecular materials. 
    more » « less