- Award ID(s):
- 1707490
- NSF-PAR ID:
- 10184902
- Date Published:
- Journal Name:
- Molecules
- Volume:
- 25
- Issue:
- 7
- ISSN:
- 1420-3049
- Page Range / eLocation ID:
- 1648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Photoinduced atom transfer radical polymerization (photo-ATRP) has risen to the forefront of modern polymer chemistry as a powerful tool giving access to well-defined materials with complex architecture. However, most photo-ATRP systems can only generate radicals under biocidal UV light and are oxygen-sensitive, hindering their practical use in the synthesis of polymer biohybrids. Herein, inspired by the photoinduced electron transfer-reversible addition–fragmentation chain transfer (PET-RAFT) polymerization, we demonstrate a dual photoredox/copper catalysis that allows open-air ATRP under green light irradiation. Eosin Y was used as an organic photoredox catalyst (PC) in combination with a copper complex (X–Cu II /L). The role of PC was to trigger and drive the polymerization, while X–Cu II /L acted as a deactivator, providing a well-controlled polymerization. The excited PC was oxidatively quenched by X–Cu II /L, generating Cu I /L activator and PC˙ + . The ATRP ligand (L) used in excess then reduced the PC˙ + , closing the photocatalytic cycle. The continuous reduction of X–Cu II /L back to Cu I /L by excited PC provided high oxygen tolerance. As a result, a well-controlled and rapid ATRP could proceed even in an open vessel despite continuous oxygen diffusion. This method allowed the synthesis of polymers with narrow molecular weight distributions and controlled molecular weights using Cu catalyst and PC at ppm levels in both aqueous and organic media. A detailed comparison of photo-ATRP with PET-RAFT polymerization revealed the superiority of dual photoredox/copper catalysis under biologically relevant conditions. The kinetic studies and fluorescence measurements indicated that in the absence of the X–Cu II /L complex, green light irradiation caused faster photobleaching of eosin Y, leading to inhibition of PET-RAFT polymerization. Importantly, PET-RAFT polymerizations showed significantly higher dispersity values (1.14 ≤ Đ ≤ 4.01) in contrast to photo-ATRP (1.15 ≤ Đ ≤ 1.22) under identical conditions.more » « less
-
Abstract Atom transfer radical polymerization (ATRP) is a staple technique for the preparation of polymers with well‐defined architecture. In ATRP, the catalyst governs the equilibrium between propagating radicals and dormant species, thus affecting the polymerization control for a range of monomers and transferable atoms employed in the process. The design and the use of highly active catalysts could diminish the amount of transition metal complexes, extend ATRP to less active monomers and give access to new chain‐end functionalities. At the same time, very active catalysts can be involved in formation of organometallic species. Herein, the role of the catalyst on the ATRP equilibrium is carefully elucidated, together with recent observations on the impact of the catalyst nature on formation of organometallic species and relevant side reactions. Based on this knowledge, a perspective on the benefits and challenges that derive from the use of highly active ATRP catalysts is presented.
-
Atom Transfer Radical Polymerization: Billion Times More Active Catalysts and New Initiation Systems
Abstract Approaching 25 years since its invention, atom transfer radical polymerization (ATRP) is established as a powerful technique to prepare precisely defined polymeric materials. This perspective focuses on the relation between structure and activity of ATRP catalysts, and the consequent choice of the initiating system, which are paramount aspects to well‐controlled polymerizations. The ATRP mechanism is discussed, including the effect of kinetic and thermodynamic parameters and side reactions affecting the catalyst. The coordination chemistry and activity of copper complexes used in ATRP are reviewed in chronological order, while emphasizing the structure–activity correlation. ATRP‐initiating systems are described, from normal ATRP to low ppm Cu systems. Most recent advancements regarding dispersed media and oxygen‐tolerant techniques are presented, as well as future opportunities that arise from progressively more active catalysts and deeper mechanistic understanding.
-
Efficient transfer of halogen atoms is essential for controlling the growth of polymers in atom transfer radical polymerization (ATRP). The nature of halogens may influence the efficiency of the halogen atom transfer during the activation and deactivation processes. The effect of halogens can be associated with the C–X bond dissociation energy and the affinity of the halogens/halides to the transition metal catalyst. In this paper, we study the effect of halogens (Br vs. Cl) and reaction media in iron-catalyzed ATRP in the presence of halide anions as ligands. In Br-based initiating systems, polymerization of methacrylate monomers was well-controlled whereas Cl-based initiating systems provided limited control over the polymerization. The high affinity of the Cl atom to the iron catalyst renders it less efficient for fast deactivation of growing chains, resulting in polymers with molecular weights higher than predetermined by Δ[M]/[RX] o and with high dispersities. Conversely, Br can be exchanged with higher efficiency and hence provided good control over polymerization. Decreasing the polarity of the reaction medium improved the polymerization control. Polymerizations using ppm levels of the iron catalyst in acetonitrile (a more polar solvent) yielded polymers with larger dispersity values due to the slow rate of deactivation as opposed to the less polar solvent anisole, which afforded well-controlled polymers with dispersity <1.2.more » « less
-
Photoinduced organocatalyzed atom-transfer radical polymerization (O-ATRP) is a controlled radical polymerization technique that can be driven using low-energy, visible light and makes use of organic photocatalysts. Limitations of O-ATRP have traditionally included the need for high catalyst loadings (1000 ppm) and the narrow scope of monomers that can be controllably polymerized. Recent advances have shown that N , N -diaryl dihydrophenazine (DHP) organic photoredox catalysts (PCs) are capable of controlling O-ATRP at PC loadings as low as 10 ppm, a significant advancement in the field. In this work we synthesized five new DHP PCs and examined their efficacy in controlling O-ATRP at low ppm catalyst loadings. We found that we were able to polymerize methyl methacrylate at PC loadings as low as 10 ppm (relative to monomer) while producing polymers with dispersities as low as Đ = 1.33 and achieving initiator efficiencies ( I* ) near unity (102%). In addition to applying these PCs in O-ATRP, we carried out a thorough investigation into the structure–property relationships of the new DHP PCs reported herein and report new photophysical characterization data for previously reported DHPs. The insight into the DHP structure–property relationships that we discuss herein will aid in the elucidation of their ability to catalyze O-ATRP at low catalyst loadings. Additionally, this work sheds light on how structural modifications affect certain PC properties with the goal of bolstering our understanding of how to tune PC structures to overcome current limitations in O-ATRP such as the controlled polymerization of challenging monomers.more » « less