skip to main content


Title: A Regularization-Based Adaptive Test for High-Dimensional Generalized Linear Models
In spite of its urgent importance in the era of big data, testing high-dimensional parameters in generalized linear models (GLMs) in the presence of high-dimensional nuisance parameters has been largely under-studied, especially with regard to constructing powerful tests for general (and unknown) alternatives. Most existing tests are powerful only against certain alternatives and may yield incorrect Type I error rates under high-dimensional nuisance parameter situations. In this paper, we propose the adaptive interaction sum of powered score (aiSPU) test in the framework of penalized regression with a non-convex penalty, called truncated Lasso penalty (TLP), which can maintain correct Type I error rates while yielding high statistical power across a wide range of alternatives. To calculate its p-values analytically, we derive its asymptotic null distribution. Via simulations, its superior finite-sample performance is demonstrated over several representative existing methods. In addition, we apply it and other representative tests to an Alzheimer’s Disease Neuroimaging Initiative (ADNI) data set, detecting possible gene-gender interactions for Alzheimer’s disease. We also put R package “aispu” implementing the proposed test on GitHub.  more » « less
Award ID(s):
1711226
NSF-PAR ID:
10185057
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of machine learning research
Volume:
21
Issue:
129
ISSN:
1532-4435
Page Range / eLocation ID:
1-67
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fan, J ; Pan, J. (Ed.)
    Testing whether the mean vector from some population is zero or not is a fundamental problem in statistics. In the high-dimensional regime, where the dimension of data p is greater than the sample size n, traditional methods such as Hotelling’s T2 test cannot be directly applied. One can project the high-dimensional vector onto a space of low dimension and then traditional methods can be applied. In this paper, we propose a projection test based on a new estimation of the optimal projection direction Σ^{−1}μ. Under the assumption that the optimal projection Σ^{−1}μ is sparse, we use a regularized quadratic programming with nonconvex penalty and linear constraint to estimate it. Simulation studies and real data analysis are conducted to examine the finite sample performance of different tests in terms of type I error and power. 
    more » « less
  2. Summary

    The paper considers the problem of hypothesis testing and confidence intervals in high dimensional proportional hazards models. Motivated by a geometric projection principle, we propose a unified likelihood ratio inferential framework, including score, Wald and partial likelihood ratio statistics for hypothesis testing. Without assuming model selection consistency, we derive the asymptotic distributions of these test statistics, establish their semiparametric optimality and conduct power analysis under Pitman alternatives. We also develop new procedures to construct pointwise confidence intervals for the baseline hazard function and conditional hazard function. Simulation studies show that all tests proposed perform well in controlling type I errors. Moreover, the partial likelihood ratio test is empirically more powerful than the other tests. The methods proposed are illustrated by an example of a gene expression data set.

     
    more » « less
  3. Abstract

    Integrating results from genome-wide association studies (GWASs) and gene expression studies through transcriptome-wide association study (TWAS) has the potential to shed light on the causal molecular mechanisms underlying disease etiology. Here, we present a probabilistic Mendelian randomization (MR) method, PMR-Egger, for TWAS applications. PMR-Egger relies on a MR likelihood framework that unifies many existing TWAS and MR methods, accommodates multiple correlated instruments, tests the causal effect of gene on trait in the presence of horizontal pleiotropy, and is scalable to hundreds of thousands of individuals. In simulations, PMR-Egger provides calibrated type I error control for causal effect testing in the presence of horizontal pleiotropic effects, is reasonably robust under various types of model misspecifications, is more powerful than existing TWAS/MR approaches, and can directly test for horizontal pleiotropy. We illustrate the benefits of PMR-Egger in applications to 39 diseases and complex traits obtained from three GWASs including the UK Biobank.

     
    more » « less
  4. Summary

    Covariate-adaptive randomization is popular in clinical trials with sequentially arrived patients for balancing treatment assignments across prognostic factors that may have influence on the response. However, existing theory on tests for the treatment effect under covariate-adaptive randomization is limited to tests under linear or generalized linear models, although the covariate-adaptive randomization method has been used in survival analysis for a long time. Often, practitioners will simply adopt a conventional test to compare two treatments, which is controversial since tests derived under simple randomization may not be valid in terms of type I error under other randomization schemes. We derive the asymptotic distribution of the partial likelihood score function under covariate-adaptive randomization and a working model that is subject to possible model misspecification. Using this general result, we prove that the partial likelihood score test that is robust against model misspecification under simple randomization is no longer robust but conservative under covariate-adaptive randomization. We also show that the unstratified log-rank test is conservative and the stratified log-rank test remains valid under covariate-adaptive randomization. We propose a modification to variance estimation in the partial likelihood score test, which leads to a score test that is valid and robust against arbitrary model misspecification under a large family of covariate-adaptive randomization schemes including simple randomization. Furthermore, we show that the modified partial likelihood score test derived under a correctly specified model is more powerful than log-rank-type tests in terms of Pitman’s asymptotic relative efficiency. Simulation studies about the type I error and power of various tests are presented under several popular randomization schemes.

     
    more » « less
  5. Recently, many regression based conditional independence (CI) test methods have been proposed to solve the problem of causal discovery. These methods provide alternatives to test CI by first removing the information of the controlling set from the two target variables, and then testing the independence between the corresponding residuals Res1 and Res2. When the residuals are linearly uncorrelated, the independence test between them is nontrivial. With the ability to calculate inner product in high-dimensional space, kernel-based methods are usually used to achieve this goal, but still consume considerable time. In this paper, we investigate the independence between two linear combinations under linear non-Gaussian structural equation model. We show that the dependence between the two residuals can be captured by the difference between the similarity of (Res1, Res2) and that of (Res1, Res3) (Res3 is generated by random permutation) in high-dimensional space. With this result, we design a new method called SCIT for CI test, where permutation test is performed to control Type I error rate. The proposed method is simpler yet more efficient and effective than the existing ones. When applied to causal discovery, the proposed method outperforms the counterparts in terms of both speed and Type II error rate, especially in the case of small sample size, which is validated by our extensive experiments on various datasets. 
    more » « less