skip to main content


Title: Mechanism and potential sites of potassium interaction with glutamate transporters

In the mammalian glutamate transporters, countertransported intracellular K+ is essential for relocating the glutamate binding site to the extracellular side of the membrane. This K+-dependent process is believed to be rate limiting for the transport cycle. In contrast, extracellular K+ induces glutamate release upon transporter reversal. Here, we analyzed potential K+ binding sites using molecular dynamics (MD) simulations and site-directed mutagenesis. Two candidate sites were identified by spontaneous K+ binding in MD simulations, one site (K1 site) overlapping with the Na1 Na+ binding site and the K2 site being localized under hairpin loop 2 (HP2). Mutations to conserved amino acid residues in these sites resulted in several transporters that were defective in K+-induced reverse transport and which bound K+ with reduced apparent affinity compared with the wild-type transporter. However, external K+ interaction was abolished in only one mutant transporter EAAC1D454A in the K1 site. Our results, for the first time, directly demonstrate effects of K1-site mutations on K+ binding, in contrast to previous reports on K+ binding sites based on indirect evidence. We propose that K+ binding to the K1 site is responsible for catalyzing the relocation step, whereas binding to the K2 site may have an as-of-yet unidentified regulatory function.

 
more » « less
NSF-PAR ID:
10185159
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1085
Date Published:
Journal Name:
Journal of General Physiology
Volume:
152
Issue:
10
ISSN:
0022-1295
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Membrane transporters of the solute carrier 6 (SLC6) family mediate various physiological processes by facilitating the translocation of amino acids, neurotransmitters, and other metabolites. In the body, the activity of these transporters is tightly controlled through various post-translational modifications with implications on protein expression, stability, membrane trafficking, and dynamics. While N-linked glycosylation is a universal regulatory mechanism among eukaryotes, a consistent mechanism of how glycosylation affects the SLC6 transporter family remains elusive. It is generally believed that glycans influence transporter stability and membrane trafficking; however, the role of glycosylation on transporter dynamics remains disputable, with differing conclusions among individual transporters across the SLC6 family. In this study, we collected over 1 ms of aggregated all-atom molecular dynamics (MD) simulation data to systematically identify the impact of N-glycans on SLC6 transporter dynamics. We modeled four human SLC6 transporters, the serotonin, dopamine, glycine, and B0AT1 transporters, by first simulating all possible combinations of a glycan attached to each glycosylation site followed by investigating the effect of larger, oligo-N-linked glycans to each transporter. The simulations reveal that glycosylation does not significantly affect the transporter structure but alters the dynamics of the glycosylated extracellular loop and surrounding regions. The structural consequences of glycosylation on the loop dynamics are further emphasized with larger glycan molecules attached. However, no apparent differences in ligand stability or movement of the gating helices were observed, and as such, the simulations suggest that glycosylation does not have a profound effect on conformational dynamics associated with substrate transport. 
    more » « less
  2. YiiP is a secondary transporter that couples Zn2+ transport to the proton motive force. Structural studies of YiiP from prokaryotes and Znt8 from humans have revealed three different Zn2+ sites and a conserved homodimeric architecture. These structures define the inward-facing and outward-facing states that characterize the archetypal alternating access mechanism of transport. To study the effects of Zn2+ binding on the conformational transition, we use cryo-EM together with molecular dynamics simulation to compare structures of YiiP from Shewanella oneidensis in the presence and absence of Zn2+. To enable single-particle cryo-EM, we used a phage-display library to develop a Fab antibody fragment with high affinity for YiiP, thus producing a YiiP/Fab complex. To perform MD simulations, we developed a nonbonded dummy model for Zn2+ and validated its performance with known Zn2+-binding proteins. Using these tools, we find that, in the presence of Zn2+, YiiP adopts an inward-facing conformation consistent with that previously seen in tubular crystals. After removal of Zn2+ with high-affinity chelators, YiiP exhibits enhanced flexibility and adopts a novel conformation that appears to be intermediate between inward-facing and outward-facing states. This conformation involves closure of a hydrophobic gate that has been postulated to control access to the primary transport site. Comparison of several independent cryo-EM maps suggests that the transition from the inward-facing state is controlled by occupancy of a secondary Zn2+ site at the cytoplasmic membrane interface. This work enhances our understanding of individual Zn2+ binding sites and their role in the conformational dynamics that govern the transport cycle.

     
    more » « less
  3. Brun, Yves V. (Ed.)
    ABSTRACT Fluctuations in osmolarity are one of the most prevalent stresses to which bacteria must adapt, both hypo- and hyperosmotic conditions. Most bacteria cope with high osmolarity by accumulating compatible solutes (osmolytes) in the cytoplasm to maintain the turgor pressure of the cell. Vibrio parahaemolyticus , a halophile, utilizes at least six compatible solute transporters for the uptake of osmolytes: two ABC family ProU transporters and four betaine-carnitine-choline transporter (BCCT) family transporters. The full range of compatible solutes transported by this species has yet to be determined. Using an osmolyte phenotypic microarray plate for growth analyses, we expanded the known osmolytes used by V. parahaemolyticus to include N , N -dimethylglycine (DMG), among others. Growth pattern analysis of four triple- bccT mutants, possessing only one functional BCCT, indicated that BccT1 (VP1456), BccT2 (VP1723), and BccT3 (VP1905) transported DMG. BccT1 was unusual in that it could take up both compounds with methylated head groups (glycine betaine [GB], choline, and DMG) and cyclic compounds (ectoine and proline). Bioinformatics analysis identified the four coordinating amino acid residues for GB in the BccT1 protein. In silico modeling analysis demonstrated that GB, DMG, and ectoine docked in the same binding pocket in BccT1. Using site-directed mutagenesis, we showed that a strain with all four residues mutated resulted in the loss of uptake of GB, DMG, and ectoine. We showed that three of the four residues were essential for ectoine uptake, whereas only one of the residues was important for GB uptake. Overall, we have demonstrated that DMG is a highly effective compatible solute for Vibrio species and have elucidated the amino acid residues in BccT1 that are important for the coordination of GB, DMG, and ectoine transport. IMPORTANCE Vibrio parahaemolyticus possesses at least six osmolyte transporters, which allow the bacterium to adapt to high-salinity conditions. In this study, we identified several additional osmolytes that were utilized by V. parahaemolyticus . We demonstrated that the compound DMG, which is present in the marine environment, was a highly effective osmolyte for Vibrio species. We determined that DMG is transported via BCCT family carriers, which have not been shown previously to take up this compound. BccT1 was a carrier for GB, DMG, and ectoine, and we identified the amino acid residues essential for the coordination of these compounds. The data suggest that for BccT1, GB is more easily accommodated than ectoine in the transporter binding pocket. 
    more » « less
  4. EmrE is anEscherichia colimultidrug efflux pump and member of the small multidrug resistance (SMR) family that transports drugs as a homodimer by harnessing energy from the proton motive force. SMR family transporters contain a conserved glutamate residue in transmembrane 1 (Glu14 in EmrE) that is required for binding protons and drugs. Yet the mechanism underlying proton-coupled transport by the two glutamate residues in the dimer remains unresolved. Here, we used NMR spectroscopy to determine acid dissociation constants (pKa) for wild-type EmrE and heterodimers containing one or two Glu14 residues in the dimer. For wild-type EmrE, we measured chemical shifts of the carboxyl side chain of Glu14 using solid-state NMR in lipid bilayers and obtained unambiguous evidence on the existence of asymmetric protonation states. Subsequent measurements of pKavalues for heterodimers with a single Glu14 residue showed no significant differences from heterodimers with two Glu14 residues, supporting a model where the two Glu14 residues have independent pKavalues and are not electrostatically coupled. These insights support a transport pathway with well-defined protonation states in each monomer of the dimer, including a preferred cytoplasmic-facing state where Glu14 is deprotonated in monomer A and protonated in monomer B under pH conditions in the cytoplasm ofE. coli. Our findings also lead to a model, hop-free exchange, which proposes how exchangers with conformation-dependent pKavalues reduce proton leakage. This model is relevant to the SMR family and transporters comprised of inverted repeat domains.

     
    more » « less
  5. Abstract

    Three Na+sites are defined in the Na+-bound crystal structure of Na+, K+-ATPase. Sites I and II overlap with two K+sites in the K+-bound structure, whereas site III is unique and Na+specific. A glutamine in transmembrane helix M8 (Q925) appears from the crystal structures to coordinate Na+at site III, but does not contribute to K+coordination at sites I and II. Here we address the functional role of Q925 in the various conformational states of Na+, K+-ATPase by examining the mutants Q925A/G/E/N/L/I/Y. We characterized these mutants both enzymatically and electrophysiologically, thereby revealing their Na+and K+binding properties. Remarkably, Q925 substitutions had minor effects on Na+binding from the intracellular side of the membrane – in fact, mutations Q925A and Q925G increased the apparent Na+affinity – but caused dramatic reductions of the binding of K+as well as Na+from the extracellular side of the membrane. These results provide insight into the changes taking place in the Na+-binding sites, when they are transformed from intracellular- to extracellular-facing orientation in relation to the ion translocation process, and demonstrate the interaction between sites III and I and a possible gating function of Q925 in the release of Na+at the extracellular side.

     
    more » « less