skip to main content


Title: End of Green Sahara amplified mid- to late Holocene megadroughts in mainland Southeast Asia
Abstract

Between 5 and 4 thousand years ago, crippling megadroughts led to the disruption of ancient civilizations across parts of Africa and Asia, yet the extent of these climate extremes in mainland Southeast Asia (MSEA) has never been defined. This is despite archeological evidence showing a shift in human settlement patterns across the region during this period. We report evidence from stalagmite climate records indicating a major decrease of monsoon rainfall in MSEA during the mid- to late Holocene, coincident with African monsoon failure during the end of the Green Sahara. Through a set of modeling experiments, we show that reduced vegetation and increased dust loads during the Green Sahara termination shifted the Walker circulation eastward and cooled the Indian Ocean, causing a reduction in monsoon rainfall in MSEA. Our results indicate that vegetation-dust climate feedbacks from Sahara drying may have been the catalyst for societal shifts in MSEA via ocean-atmospheric teleconnections.

 
more » « less
Award ID(s):
1602947
NSF-PAR ID:
10185391
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Proxy reconstructions from the mid‐Holocene (MH: 6,000 years ago) indicate an intensification of the West African Monsoon and a weakening of the South American Monsoon, primarily resulting from orbitally‐driven insolation changes. However, model studies that account for MH orbital configurations and greenhouse gas concentrations can only partially reproduce these changes. Most model studies do not account for the remarkable vegetation changes that occurred during the MH, in particular over the Sahara, precluding realistic simulations of the period. Here, we study precipitation changes over northern Africa and South America using four fully coupled global climate models by accounting for the Saharan greening. Incorporating the Green Sahara amplifies orbitally‐driven changes over both regions, and leads to an improvement in proxy‐model agreement. Our work highlights the local and remote impacts of vegetation and the importance of considering vegetation changes in the Sahara when studying and modeling global climate.

     
    more » « less
  2. Abstract

    Climate model simulations of the mid‐Holocene (MH) consistently underestimate northern African rainfall for reasons not fully understood. While most models incorporate orbital forcing and vegetation feedbacks, they neglect dust reductions associated with greater vegetation cover. Here we simulate the MH climate response to reduced Saharan dust using CESM CAM5‐chem, which resolves direct and indirect dust aerosol effects. Direct aerosol effects increase Saharan and Sahel convective rainfall by ~16% and 8%. In contrast, indirect aerosol effects decrease stratiform rainfall, damping the dust‐induced total rainfall increase by ~13% in the Sahara and ~59% in the Sahel. Sensitivity experiments indicate the dust‐induced precipitation anomaly in the Sahara and Sahel (0.27 and 0.18 mm/day) is smaller than the anomaly from MH vegetation cover (1.19 and 1.08 mm/day). Although sensitive to dust radiative properties, sea surface temperatures, and indirect aerosol effect parameterization, our results suggest that dust reductions had competing effects on MH African rainfall.

     
    more » « less
  3. Abstract. The International Ocean Discovery Program (IODP) conducted a series of expeditions between 2013 and 2016 that were designed to address thedevelopment of monsoon climate systems in Asia and Australia. Significantprogress was made in recovering Neogene sections spanning the region fromthe Arabian Sea to the Sea of Japan and southward to western Australia. Highrecovery by advanced piston corer (APC) has provided a host ofsemi-continuous sections that have been used to examine monsoonal evolution. Use of the half-length APC was successful in sampling sand-rich sediment in Indian Ocean submarine fans. The records show that humidity and seasonality developed diachronously across the region, although most regions show drying since the middle Miocene and especially since ∼ 4 Ma, likely linked to global cooling. A transition from C3 to C4 vegetation oftenaccompanied the drying but may be more linked to global cooling. WesternAustralia and possibly southern China diverge from the general trend inbecoming wetter during the late Miocene, with the Australian monsoon beingmore affected by the Indonesian Throughflow, while the Asian monsoon is tied more to the rising Himalaya in South Asia and to the Tibetan Plateau in East Asia. The monsoon shows sensitivity to orbital forcing, with many regions having a weaker summer monsoon during times of northern hemisphericGlaciation. Stronger monsoons are associated with faster continentalerosion but not weathering intensity, which either shows no trend ora decreasing strength since the middle Miocene in Asia. Marine productivityproxies and terrestrial chemical weathering, erosion, and vegetation proxiesare often seen to diverge. Future work on the almost unknown Paleogene isneeded, as well as the potential of carbonate platforms as archives ofpaleoceanographic conditions. 
    more » « less
  4. Abstract

    Indian Ocean sea surface temperatures impact precipitation across the basin through coupled ocean‐atmosphere responses to changes in climate. To understand the hydroclimate response over the western Indian Ocean and equatorial east Africa to different forcing mechanisms, we present four new proxy reconstructions from core VM19‐193 (2.98°N, 51.47°E) that span the last 250 ky. Sub‐surface water temperatures (Sub‐T; TEX86) show strong precessional (23 ky) variability that is primarily influenced by maximum incoming solar radiation (insolation) during the Northern Hemisphere spring season, likely indicating that local insolation dominates the upper water column at this tropical location over time. Leaf waxes, on the other hand, reflect two different precipitation signals:δ13Cwax(in phase with boreal fall insolation) is likely reflecting vegetation changes in response to local rainfall over east Africa, whereasδDprecip(primarily driven by boreal summer insolation) represents changes in regional circulation associated with the summer monsoon. Glacial‐interglacial changes in ocean temperatures support glacial shelf exposure over the Maritime Continent in the eastern Indian Ocean and the subsequent weakening of the Indian Walker Circulation as a mechanism driving 100 ky climate variability across the tropical Indo‐Pacific. Additionally, the 100 ky spectral power inδDprecipsupports a basin‐wide weakening of summer monsoon circulation in response to glacial climates. Overall, the proxy records from VM19‐193 indicate that both precession and glacial‐interglacial cycles exert control over hydroclimate at this tropical location.

     
    more » « less
  5. Abstract

    Earlier studies of land use land cover change (LULCC) normally used only a specified LULCC map with no interannual variations. In this study, using an Atmospheric General Circulation Model (AGCM) coupled with a land surface model, biophysical impacts of LULCC on global and regional climate are investigated by using a LULCC map which covers 63 years from 1948 to 2010 with interannual variation. A methodology has been developed to convert a recently developed LULCC fraction map with 1° × 1° resolution to the AGCM grid points in which only one dominant type is allowed. Comprehensive evaluations are conducted to ensure consistency of the trend of the original LULCC fraction change and the trend of the fraction of grid point changes over different regions. The model was integrated with a potential vegetation map (CTL) and the map with LULCC, in which a set of surface parameters such as leaf area index, albedo and other soil and vegetation parameters were accordingly changed with interannual variation. The results indicate that the interannual LULCC map simulation is able to reproduce better interannual variability of surface temperature and rainfall when compared to the control simulation. LULCC causes negative effect on global precipitation, with the strongest significant signals over degraded regions such as East Asia, West Africa and South America, and some of these changes are consistent with observed regional anomalies for certain time periods. LULCC causes reduction in net radiation and evapotranspiration which leads to changes in monsoon circulation and variation in magnitude and pattern of moisture flux convergence and subsequent reduction in precipitation. Meanwhile, LULCC enhances surface warming during the summer in the LULCC regions due to greatly reduced evapotranspiration. In contradiction to the surface, upper troposphere temperatures are cool because of less latent heat released into the upper troposphere, which leads to weaker circulation in LULCC regions.

     
    more » « less