Abstract Proxy reconstructions from the mid‐Holocene (MH: 6,000 years ago) indicate an intensification of the West African Monsoon and a weakening of the South American Monsoon, primarily resulting from orbitally‐driven insolation changes. However, model studies that account for MH orbital configurations and greenhouse gas concentrations can only partially reproduce these changes. Most model studies do not account for the remarkable vegetation changes that occurred during the MH, in particular over the Sahara, precluding realistic simulations of the period. Here, we study precipitation changes over northern Africa and South America using four fully coupled global climate models by accounting for the Saharan greening. Incorporating the Green Sahara amplifies orbitally‐driven changes over both regions, and leads to an improvement in proxy‐model agreement. Our work highlights the local and remote impacts of vegetation and the importance of considering vegetation changes in the Sahara when studying and modeling global climate.
more »
« less
End of Green Sahara amplified mid- to late Holocene megadroughts in mainland Southeast Asia
Abstract Between 5 and 4 thousand years ago, crippling megadroughts led to the disruption of ancient civilizations across parts of Africa and Asia, yet the extent of these climate extremes in mainland Southeast Asia (MSEA) has never been defined. This is despite archeological evidence showing a shift in human settlement patterns across the region during this period. We report evidence from stalagmite climate records indicating a major decrease of monsoon rainfall in MSEA during the mid- to late Holocene, coincident with African monsoon failure during the end of the Green Sahara. Through a set of modeling experiments, we show that reduced vegetation and increased dust loads during the Green Sahara termination shifted the Walker circulation eastward and cooled the Indian Ocean, causing a reduction in monsoon rainfall in MSEA. Our results indicate that vegetation-dust climate feedbacks from Sahara drying may have been the catalyst for societal shifts in MSEA via ocean-atmospheric teleconnections.
more »
« less
- Award ID(s):
- 1602947
- PAR ID:
- 10185391
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The mid‐Holocene is frequently used for climate model‐proxy comparison studies, yet models often struggle to replicate the proxy signals from this period. Here, we use an Earth system model that tracks water isotopologies to determine the importance of a vegetated Sahara in the simulation of mid‐Holocene climate, with a focus on δ18O values recorded in speleothems from the South American and Asian monsoon regions. We find that inclusion of a vegetated Sahara during the mid‐Holocene leads to global warming and generally amplifies the changes in the δ18O values of the precipitation in the South American and Asian monsoon regions relative to preindustrial; both feedbacks improve model‐proxy agreement. Our results highlight the importance of regional vegetation alteration for accurate simulation of past climate, even when the region of study is far from the source of vegetation change.more » « less
-
Abstract. The International Ocean Discovery Program (IODP) conducted a series of expeditions between 2013 and 2016 that were designed to address thedevelopment of monsoon climate systems in Asia and Australia. Significantprogress was made in recovering Neogene sections spanning the region fromthe Arabian Sea to the Sea of Japan and southward to western Australia. Highrecovery by advanced piston corer (APC) has provided a host ofsemi-continuous sections that have been used to examine monsoonal evolution. Use of the half-length APC was successful in sampling sand-rich sediment in Indian Ocean submarine fans. The records show that humidity and seasonality developed diachronously across the region, although most regions show drying since the middle Miocene and especially since ∼ 4 Ma, likely linked to global cooling. A transition from C3 to C4 vegetation oftenaccompanied the drying but may be more linked to global cooling. WesternAustralia and possibly southern China diverge from the general trend inbecoming wetter during the late Miocene, with the Australian monsoon beingmore affected by the Indonesian Throughflow, while the Asian monsoon is tied more to the rising Himalaya in South Asia and to the Tibetan Plateau in East Asia. The monsoon shows sensitivity to orbital forcing, with many regions having a weaker summer monsoon during times of northern hemisphericGlaciation. Stronger monsoons are associated with faster continentalerosion but not weathering intensity, which either shows no trend ora decreasing strength since the middle Miocene in Asia. Marine productivityproxies and terrestrial chemical weathering, erosion, and vegetation proxiesare often seen to diverge. Future work on the almost unknown Paleogene isneeded, as well as the potential of carbonate platforms as archives ofpaleoceanographic conditions.more » « less
-
Abstract Atmospheric river (AR) and its impact on monsoon rainfall in East Asia are investigated by considering their month‐to‐month variations during the East Asian summer monsoon (EASM). The AR in the EASM, defined as an anomalously enhanced plume‐like water vapor transport, frequently forms over eastern China, Korea and western Japan. However, its characteristics vary from the early (June‐July) to the late (August‐September) period of the EASM. In the early EASM, AR is typically characterized by a quasi‐stationary monsoon southwesterly along the northern boundary of the western North Pacific subtropical high (WNPSH), which is further intensified by a migrating extratropical cyclone in the north. In contrast, the late‐EASM AR, which is less frequent than the early EASM AR, is primarily organized by a migrating extratropical cyclone. The quasi‐stationary monsoon southwesterly is less influential as the northern boundary of the WNPSH shifts northward, being decoupled from the subtropical ocean. Both the early‐ and late‐EASM ARs contribute substantially to monsoon rainfall, especially to heavy rainfall events. In the early EASM, 35%–70% of total rainfall amount and 60%–80% of heavy rainfall events in eastern China, Korea and western Japan are associated with AR. Although weakened, AR‐related rainfall is still significant in the late EASM in Korea and western Japan. These results indicate that AR is a key ingredient of EASM precipitation and its subseasonal variations should be taken into account to better understand and predict AR‐related extreme precipitation in East Asia.more » « less
-
Abstract Rainfall over mainland Southeast Asia experiences variability on seasonal to decadal timescales in response to a multitude of climate phenomena. Historical records and paleoclimate archives that span the last millennium reveal extreme multi-year rainfall variations that significantly affected the societies of mainland Southeast Asia. Here we utilize the Community Earth System Model Last Millennium Ensemble (CESM-LME) to quantify the contributions of internal and external drivers to decadal-scale rainfall extremes in the Southeast Asia region. We find that internal variability was dominant in driving both Southeast Asian drought and pluvial extremes on decadal timescales although external forcing impacts are also detectable. Specifically, rainfall extremes are more sensitive to Pacific Ocean internal variability than the state of the Indian Ocean. This discrepancy is greater for droughts than pluvials which we suggest is attributable to external forcing impacts that counteract the forced Indian Ocean teleconnections to Southeast Asia. Volcanic aerosols, the most effective radiative forcing during the last millennium, contributed to both the Ming Dynasty Drought (1637–1643) and the Strange Parallels Drought (1756–1768). From the Medieval Climate Anomaly to the Little Ice Age, we observe a shift in Indo-Pacific teleconnection strength to Southeast Asia consistent with enhanced volcanism during the latter interval. This work not only highlights asymmetries in the drivers of rainfall extremes but also presents a framework for quantifying multivariate drivers of decadal-scale variability and hydroclimatic extremes.more » « less