skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: How Experts Detect Phishing Scam Emails
Phishing scam emails are emails that pretend to be something they are not in order to get the recipient of the email to undertake some action they normally would not. While technical protections against phishing reduce the number of phishing emails received, they are not perfect and phishing remains one of the largest sources of security risk in technology and communication systems. To better understand the cognitive process that end users can use to identify phishing messages, I interviewed 21 IT experts about instances where they successfully identified emails as phishing in their own inboxes. IT experts naturally follow a three-stage process for identifying phishing emails. In the first stage, the email recipient tries to make sense of the email, and understand how it relates to other things in their life. As they do this, they notice discrepancies: little things that are ``off'' about the email. As the recipient notices more discrepancies, they feel a need for an alternative explanation for the email. At some point, some feature of the email --- usually, the presence of a link requesting an action --- triggers them to recognize that phishing is a possible alternative explanation. At this point, they become suspicious (stage two) and investigate the email by looking for technical details that can conclusively identify the email as phishing. Once they find such information, then they move to stage three and deal with the email by deleting it or reporting it. I discuss ways this process can fail, and implications for improving training of end users about phishing.  more » « less
Award ID(s):
1714126
PAR ID:
10185408
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the ACM on humancomputer interaction
Volume:
4
Issue:
CSCW
ISSN:
2573-0142
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Phishing emails are scam communications that pretend to be something they are not in order to get people to take actions they otherwise would not. We surveyed a demographically matched sample of 297 people from across the United States and asked them to share their descriptions of a specific experience with a phishing email. Analyzing these experiences, we found that email users' experiences detecting phishing messages have many properties in common with how IT experts identify phishing. We also found that email users bring unique knowledge and valuable capabilities to this identification process that neither technical controls nor IT experts have. We suggest that targeting training toward how to use this uniqueness is likely to improve phishing prevention. 
    more » « less
  2. null (Ed.)
    Email remains one of the most widely used methods of communication globally. However, successful phishing email attacks and subsequent costs remain unreasonably high despite technical advances in defenses that limit phishing scams. In this paper, we examine human detection of phishing. We found that non-experts go through four different sensemaking processes to determine if an email is a phishing message; they use different knowledge and skills to become suspicious differently in each process. Additionally, non-experts rely on their social connections as an investigative tool to determine if an email is a phishing scam. We discuss the impact of our findings on phishing training and technology. 
    more » « less
  3. Phishing emails have certain characteristics, including wording related to urgency and unrealistic promises (i.e., “too good to be true”), that attempt to lure victims. To test whether these characteristics affected users’ suspiciousness of emails, users participated in a phishing judgment task in which we manipulated 1) email type (legitimate, phishing), 2) consequence amount (small, medium, large), 3) consequence type (gain, loss), and 4) urgency (present, absent). We predicted users would be most suspicious of phishing emails that were urgent and offered large gains. Results supporting the hypotheses indicate that users were more suspicious of phishing emails with a gain consequence type or large consequence amount. However, urgency was not a significant predictor of suspiciousness for phishing emails, but was for legitimate emails. These results have important cybersecurity-related implications for penetration testing and user training. 
    more » « less
  4. Even with many successful phishing email detectors, phishing emails still cost businesses and individuals millions of dollars per year. Most of these models seem to ignore features like word count, stopword count, and punctuations; they use features like n-grams and part of speech tagging. Previous phishing email research ignores or removes the stopwords, and features relating to punctuation only count as a minor part of the detector. Even with a strong unconventional focus on features like word counts, stopwords, punctuation, and uniqueness factors, an ensemble learning model based on a linear kernel SVM gave a true positive rate of 83% and a true negative rate of 96%. Moreover, these features are robustly detected even in noisy email data. It is much easier to detect our features than correct part-of-speech tags or named entities in emails. 
    more » « less
  5. We present the first large-scale characterization of lateral phishing attacks, based on a dataset of 113 million employee-sent emails from 92 enterprise organizations. In a lateral phishing attack, adversaries leverage a compromised enterprise account to send phishing emails to other users, benefitting from both the implicit trust and the information in the hijacked user's account. We develop a classifier that finds hundreds of real-world lateral phishing emails, while generating under four false positives per every one-million employeesent emails. Drawing on the attacks we detect, as well as a corpus of user-reported incidents, we quantify the scale of lateral phishing, identify several thematic content and recipient targeting strategies that attackers follow, illuminate two types of sophisticated behaviors that attackers exhibit, and estimate the success rate of these attacks. Collectively, these results expand our mental models of the `enterprise attacker' and shed light on the current state of enterprise phishing attacks 
    more » « less