skip to main content


Title: Board 79: Building a Networked Improvement Community (NIC) around Engaging Minority Males in STEM
The percentage of minority males in the science, technology, engineering, and mathematics (STEM) workforce is about half of their representation in the US population. Roadblocks that continue to challenge minority males include: disparity in access to high quality STEM educational resources, a lack of role models, and a shortage of highly trained, minority STEM educators. This work describes an INCLUDES Design and Development Launch Pilot that builds on an existing regional partnership of four Historically Black Colleges and Universities (HBCUs) that are working together to improve STEM outcomes for middle school minority male students. Using collective impact-style approaches such as implementing mutually reinforcing activities through a Network Improvement Community (NIC) these partners are addressing the larger goal of improving STEM achievement in minority males, particularly in middle school. Activities of the NIC included a workshop to share best practices and define the NIC, workgroups to engage in improvement cycles, a website that will contribute to the knowledge base regarding effective strategies for enhancing STEM educational opportunities for minority males, and webinars. The project partners have also created a roadmap for a NIC to address the challenges described above. This paper describes a work in progress and will provides an update on the NIC to the broader engineering community.  more » « less
Award ID(s):
1649316
NSF-PAR ID:
10185615
Author(s) / Creator(s):
Date Published:
Journal Name:
2018 ASEE Annual Conference & Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The percentage of minority males in the science, technology, engineering, and mathematics (STEM) workforce is about half of their representation in the US population. Roadblocks that continue to challenge minority males include: disparity in access to high quality STEM educational resources, a lack of role models, and a shortage of highly trained, minority STEM educators. This work describes an INCLUDES Design and Development Launch Pilot that builds on an existing regional partnership of four Historically Black Colleges and Universities (HBCUs) that are working together to improve STEM outcomes for middle school minority male students. Using collective impact-style approaches such as implementing mutually reinforcing activities through a Network Improvement Community (NIC) these partners are addressing the larger goal of improving STEM achievement in minority males, particularly in middle school. Activities of the NIC included a workshop to share best practices and define the NIC, workgroups to engage in improvement cycles, a website that will contribute to the knowledge base regarding effective strategies for enhancing STEM educational opportunities for minority males, and webinars. The project partners have also created a roadmap for a NIC to address the challenges described above. This paper describes a work in progress and will provides an update on the NIC to the broader engineering community. 
    more » « less
  2. The percentage of minority males in the science, technology, engineering, and mathematics (STEM) workforce is about half of their representation in the US population. Roadblocks that continue to challenge minority males include: disparity in access to high quality STEM educational resources, a lack of role models, and a shortage of highly trained, minority STEM educators. This work describes an INCLUDES Design and Development Launch Pilot that builds on an existing regional partnership of four Historically Black Colleges and Universities (HBCUs) that are working together to improve STEM outcomes for middle school minority male students. Using collective impact-style approaches such as implementing mutually reinforcing activities through a Network Improvement Community (NIC) these partners are addressing the larger goal of improving STEM achievement in minority males, particularly in middle school. Activities of the NIC included a workshop to share best practices and define the NIC, workgroups to engage in improvement cycles, a website that will contribute to the knowledge base regarding effective strategies for enhancing STEM educational opportunities for minority males, and webinars. The project partners have also created a roadmap for a NIC to address the challenges described above. This paper describes a work in progress and will provides an update on the NIC to the broader engineering community. 
    more » « less
  3. Economically disadvantaged youth residing in mountain tourist communities represent an important and understudied rural population. These communities typically include a large percentage of children that are English language learners. Our NSF STEM Career Connections project, A Model for Preparing Economically-Disadvantaged Rural Youth for the Future STEM Workplace, investigates strategies that help middle school youth in these communities to envision a broader range of workforce opportunities, especially in STEM and computing careers. This poster highlights the initial findings of an innovative model that involves working with local schools and community partners to support the integration of local career contexts, engineering phenomena, 3D printing technologies, career connections, and mentorship into formal educational experiences to motivate and prepare rural youth for future STEM careers. We focus on select classrooms at two middle schools and describe the implementation of a novel 3D printing curriculum during the 2020-2021 school-year. Two STEM teachers implemented the five-week curriculum with approximately 300 students per quarter. To create a rich inquiry-driven learning environment, the curriculum uses an instructional design approach called storylining. This approach is intended to promote coherence, relevance, and meaning from the students’ perspectives by using students’ questions to drive investigations and lessons. Students worked towards answering the question: “How can we support animals with physical disabilities so they can perform daily activities independently?” Students engaged in the engineering design process by defining, developing, and optimizing solutions to develop and print prosthetic limbs for animals with disabilities using 3D modeling, a unique augmented reality application, and 3D printing. In order to embed connections to STEM careers and career pathways, some students received mentorship and guidance from local STEM professionals who work in related fields. This poster will describe the curriculum and its implementation across two quarters at two middle schools in the US rural mountain west, as well as the impact on students’ interest in STEM and computing careers. During the first quarter students engaged in the 3D printing curriculum, but did not have access to the STEM career and career pathway connections mentorship piece. During the second quarter, the project established a partnership with a local STEM business -- a medical research institute that utilizes 3D printing and scanning for creating human surgical devices and procedures -- to provide mentorship to the students. Volunteers from this institute served as ongoing mentors for the students in each classroom during the second quarter. The STEM mentors guided students through the process of designing, testing, and optimizing their 3D models and 3D printed prosthetics, providing insights into how students’ learning directly applies to the medical industry. Different forms of student data such as cognitive interviews and pre/post STEM interest and spatial thinking surveys were collected and analyzed to understand the benefits of the career connections mentorship component. Preliminary findings suggest the relationship between local STEM businesses and students is important to motivate youth from rural areas to see themselves being successful in STEM careers and helping them to realize the benefits of engaging with emerging engineering technologies. 
    more » « less
  4. This Work in Progress (WIP) paper describes the development of a middle school program focused on an integrated STEM architectural engineering design project and exploration of career pathways. The current engineering workforce is increasingly aging, needing new engineering graduates to meet the industry demands. It is crucial to create inclusive educational programs in STEM to expose and connect with youths from diverse backgrounds, especially the demographics that are underrepresented, in STEM career paths. Middle school is a pivotal time for generating students’ awareness of and promoting pathways into STEM careers; however, opportunities to engage in engineering are often lacking or nonexistent, particularly for low-income students. Additionally, low-income students may bring particular experiences and skills from their backgrounds to engineering that may increase the innovation of engineering solutions. These assets are important to recognize and cultivate in young students. The Middle School Architectural Engineering Pilot Program (MSAEPP), drawing from social cognitive career theory and identity-based motivation, is an intervention designed to affect STEM related content and STEM identities, motivation, and career goals for low-income students using relatable topics within the building industry. The focus on architectural engineering activities is because buildings, and the industry they represent, touch everyone’s lives. The MSAEPP is planned to be implemented through the Talent Search Programs at middle schools in Pennsylvania. The Talent Search Program is one of the Federal TRIO Programs dedicated to assisting high school students in furthering their education. Penn State Talent Search Programs serve 22 schools in 8 impoverished school districts. The pilot program engages middle school students (seventh and eighth grade) in architectural engineering related lessons and activities, by exploring engineering identities interactions with architectural engineering industry professionals, and by planning potential career pathways in architectural engineering and other STEM careers with Talent Search Counselors. The purpose of this paper is to present the background and process used in this funded NSF project for developing the suite of architectural engineering related lessons and activities and the research plan for answering the research question: How does the combination of meaningful engineering learning, exposure to professional engineers, and career planning, focused on building industry engineering applications, increase identity-based motivation of students from low-income households and marginalized students in pursuing STEM careers? Answering this question will inform future work developing interventions that target similar goals and will validate and expand the identity-based motivation framework. Keywords: middle school, identity, motivation, informal education. 
    more » « less
  5. This Work in Progress (WIP) paper describes the development of a middle school program focused on an integrated STEM architectural engineering design project and exploration of career pathways. The current engineering workforce is increasingly aging, needing new engineering graduates to meet the industry demands. It is crucial to create inclusive educational programs in STEM to expose and connect with youths from diverse backgrounds, especially the demographics that are underrepresented, in STEM career paths. Middle school is a pivotal time for generating students’ awareness of and promoting pathways into STEM careers; however, opportunities to engage in engineering are often lacking or nonexistent, particularly for low-income students. Additionally, low-income students may bring particular experiences and skills from their backgrounds to engineering that may increase the innovation of engineering solutions. These assets are important to recognize and cultivate in young students. The Middle School Architectural Engineering Pilot Program (MSAEPP), drawing from social cognitive career theory and identity-based motivation, is an intervention designed to affect STEM-related content and STEM identities, motivation, and career goals for low-income students using relatable topics within the building industry. The focus on architectural engineering activities is because buildings, and the industry they represent, touch everyone’s lives. The MSAEPP is planned to be implemented through the Talent Search Programs at middle schools in Pennsylvania. The Talent Search Program is one of the Federal TRIO Programs dedicated to assisting high school students in furthering their education. Penn State Talent Search Programs serve 22 schools in 8 impoverished school districts. The pilot program engages middle school students (seventh and eighth grade) in architectural engineering-related lessons and activities, by exploring engineering identities interactions with architectural engineering industry professionals, and by planning potential career pathways in architectural engineering and other STEM careers with Talent Search Counselors. The purpose of this paper is to present the background and process used in this funded NSF project for developing the suite of architectural engineering related lessons and activities and the research plan for answering the research question: How do the combination of meaningful engineering learning, exposure to professional engineers, and career planning, focused on building industry engineering applications, increase identity-based motivation of students from low-income households and marginalized students in pursuing STEM careers? Answering this question will inform future work developing interventions that target similar goals and will validate and expand the identity-based motivation framework. Keywords: middle school, identity, motivation, informal education. 
    more » « less