Fast and reversible zinc ion intercalation in Al-ion modified hydrated vanadate
- Award ID(s):
- 1803256
- PAR ID:
- 10185783
- Date Published:
- Journal Name:
- Nano Energy
- Volume:
- 70
- Issue:
- C
- ISSN:
- 2211-2855
- Page Range / eLocation ID:
- 104519
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Ion-scale magnetic holes are nonlinear plasma structures commonly observed in the solar wind and Earth's magnetosphere. These holes are characterized by the magnetic field depletion filled by hot, transversely anisotropic ions and electrons and are likely formed during the nonlinear stage of ion mirror instability. Due to the plasma thermal anisotropy within magnetic holes, they serve as a host of electromagnetic ion cyclotron waves, whistler-mode waves, and electron cyclotron harmonic waves. This makes magnetic holes an important element of the Earth's inner magnetosphere, where electromagnetic waves generated within may strongly contribute to energetic ion and electron scattering. Such scattering, however, will modify the hot-ion distribution that is trapped within magnetic holes and responsible for the magnetic field stress balance. Therefore, hot ion scattering within magnetic holes likely determines the hole lifetime. In this study, we investigate how ion scattering by electromagnetic waves affects the stress balance and lifetime of magnetic holes. For illustration, we used typical characteristics of magnetic holes, ion populations, and ion cyclotron waves observed in the Earth's magnetosphere. We have demonstrated that ion distribution isotropization via scattering by waves does not change significantly magnetic hole magnitude, but ion losses due to scattering into the atmosphere may limit the hole life-times to 10–30 min in the Earth's inner magnetosphere.more » « less
-
Excluding the ion source, an ion mobility spectrometer is fundamentally comprised of drift chamber, ion gate, pulsing electronics, and a mechanism for amplifying and recording ion signals. Historically, the solutions to each of these challenges have been custom and rarely replicated exactly. For the IMS research community few detailed resources exist that explicitly detail the construction and operation of ion mobility systems. In an effort to address this knowledge gap we outline a solution to one of the key aspects of a drift tube ion mobility system, the ion gate pulser. Bradbury-Nielsen or Tyndall ion gates are found in nearly every research-grade and commercial IMS system. While conceptually simple, these gate structures often require custom, high-voltage, floating electronics. In this report we detail the operation and performance characteristics of a wifi-enabled, MOSFET-based pulser design that uses a lithium-polymer battery and does not require high voltage isolation transformers. Currently, each output of this circuit follows a TTL signal with ~20 ns rise and fall times, pulses up to +/− 200 V, and is entirely isolated using fiber optics. Detailed schematics and source code are provided to enable continued use of robust pulsing electronics that ease experimental efforts for future comparison.more » « less