skip to main content


Title: Polypyrrole coated δ-MnO 2 nanosheet arrays as a highly stable lithium-ion-storage anode
Manganese dioxide (MnO 2 ) with a conversion mechanism is regarded as a promising anode material for lithium-ion batteries (LIBs) owing to its high theoretical capacity (∼1223 mA h g −1 ) and environmental benignity as well as low cost. However, it suffers from insufficient rate capability and poor cyclic stability. To circumvent this obstacle, semiconducting polypyrrole coated-δ-MnO 2 nanosheet arrays on nickel foam (denoted as MnO 2 @PPy/NF) are prepared via hydrothermal growth of MnO 2 followed by the electrodeposition of PPy on the anode in LIBs. The electrode with ∼50 nm thick PPy coating exhibits an outstanding overall electrochemical performance. Specifically, a high rate capability is obtained with ∼430 mA h g −1 of discharge capacity at a high current density of 2.67 A g −1 and more than 95% capacity is retained after over 120 cycles at a current rate of 0.86 A g −1 . These high electrochemical performances are attributed to the special structure which shortens the ion diffusion pathway, accelerates charge transfer, and alleviates volume change in the charging/discharging process, suggesting a promising route for designing a conversion-type anode material for LIBs.  more » « less
Award ID(s):
1803256
NSF-PAR ID:
10185787
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Dalton Transactions
Volume:
49
Issue:
23
ISSN:
1477-9226
Page Range / eLocation ID:
7903 to 7913
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rechargeable lithium–sulfur batteries have emerged as a viable technology for next generation electrochemical energy storage, and the sulfur cathode plays a critical role in determining the device performance. In this study, we prepared functional composites based on polypyrrole-coated MnO 2 nanotubes as a highly efficient sulfur host (sulfur mass loading 63.5%). The hollow interior of the MnO 2 nanotubes not only allowed for accommodation of volumetric changes of sulfur particles during the cycling process, but also confined the diffusion of lithium polysulfides by physical restriction and chemical adsorption, which minimized the loss of polysulfide species. In addition, the polypyrrole outer layer effectively enhanced the electrical conductivity of the cathode to facilitate ion and electron transport. The as-prepared MnO 2 -PPy-S composite delivered an initial specific capacity of 1469 mA h g −1 and maintained an extremely stable cycling performance, with a small capacity decay of merely 0.07% per cycle at 0.2C within 500 cycles, a high average coulombic efficiency of 95.7% and an excellent rate capability at 470 mA h g −1 at the current density of 3C. 
    more » « less
  2. Ever-increasing demands for energy, particularly being environmentally friendly have promoted the transition from fossil fuels to renewable energy.1Lithium-ion batteries (LIBs), arguably the most well-studied energy storage system, have dominated the energy market since their advent in the 1990s.2However, challenging issues regarding safety, supply of lithium, and high price of lithium resources limit the further advancement of LIBs for large-scale energy storage applications.3Therefore, attention is being concentrated on an alternative electrochemical energy storage device that features high safety, low cost, and long cycle life. Rechargeable aqueous zinc-ion batteries (ZIBs) is considered one of the most promising alternative energy storage systems due to the high theoretical energy and power densities where the multiple electrons (Zn2+) . In addition, aqueous ZIBs are safer due to non-flammable electrolyte (e.g., typically aqueous solution) and can be manufactured since they can be assembled in ambient air conditions.4As an essential component in aqueous Zn-based batteries, the Zn metal anode generally suffers from the growth of dendrites, which would affect battery performance in several ways. Second, the led by the loose structure of Zn dendrite may reduce the coulombic efficiency and shorten the battery lifespan.5

    Several approaches were suggested to improve the electrochemical stability of ZIBs, such as implementing an interfacial buffer layer that separates the active Zn from the bulk electrolyte.6However, the and thick thickness of the conventional Zn metal foils remain a critical challenge in this field, which may diminish the energy density of the battery drastically. According to a theretical calculation, the thickness of a Zn metal anode with an areal capacity of 1 mAh cm-2is about 1.7 μm. However, existing extrusion-based fabrication technologies are not capable of downscaling the thickness Zn metal foils below 20 μm.

    Herein, we demonstrate a thickness controllable coating approach to fabricate an ultrathin Zn metal anode as well as a thin dielectric oxide separator. First, a 1.7 μm Zn layer was uniformly thermally evaporated onto a Cu foil. Then, Al2O3, the separator was deposited through sputtering on the Zn layer to a thickness of 10 nm. The inert and high hardness Al2O3layer is expected to lower the polarization and restrain the growth of Zn dendrites. Atomic force microscopy was employed to evaluate the roughness of the surface of the deposited Zn and Al2O3/Zn anode structures. Long-term cycling stability was gauged under the symmetrical cells at 0.5 mA cm-2for 1 mAh cm-2. Then the fabricated Zn anode was paired with MnO2as a full cell for further electrochemical performance testing. To investigate the evolution of the interface between the Zn anode and the electrolyte, a home-developed in-situ optical observation battery cage was employed to record and compare the process of Zn deposition on the anodes of the Al2O3/Zn (demonstrated in this study) and the procured thick Zn anode. The surface morphology of the two Zn anodes after circulation was characterized and compared through scanning electron microscopy. The tunable ultrathin Zn metal anode with enhanced anode stability provides a pathway for future high-energy-density Zn-ion batteries.

    Obama, B., The irreversible momentum of clean energy.Science2017,355(6321), 126-129.

    Goodenough, J. B.; Park, K. S., The Li-ion rechargeable battery: a perspective.J Am Chem Soc2013,135(4), 1167-76.

    Li, C.; Xie, X.; Liang, S.; Zhou, J., Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc‐ion Batteries.Energy & Environmental Materials2020,3(2), 146-159.

    Jia, H.; Wang, Z.; Tawiah, B.; Wang, Y.; Chan, C.-Y.; Fei, B.; Pan, F., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries.Nano Energy2020,70.

    Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T., Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives.Nanomicro Lett2022,14(1), 42.

    Yang, Q.; Li, Q.; Liu, Z.; Wang, D.; Guo, Y.; Li, X.; Tang, Y.; Li, H.; Dong, B.; Zhi, C., Dendrites in Zn-Based Batteries.Adv Mater2020,32(48), e2001854.

    Acknowledgment

    This work was partially supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 22011044) by KRISS.

    Figure 1

     

    more » « less
  3. Nickel phosphide (Ni 5 P 4 ) nanosheets are synthesized using in situ chemical vapor deposition of P on Ni foam. The thickness of the as-synthesized Ni 5 P 4 film is determined to be ∼5 nm, using atomic force microscopy (AFM). The small thickness shortens the diffusion path of Li ions and results in fast ion transport. In addition, the 2D Ni 5 P 4 nanosheets seamlessly connect to the Ni foam, which facilitates electron transfer between Ni 5 P 4 and the Ni current collector. Therefore, the binder/carbon free-nickel supported Ni 5 P 4 shows fast rate performance as an anode for lithium-ion batteries (LIBs). The specific capacity of 2D Ni 5 P 4 is obtained as 600 mA h g −1 at a cycling rate of 0.1C, approaching the theoretical capacity of 768 mA h g −1 . Even at a rate of 0.5C, the capacity remains as 450 mA h g −1 over 100 cycles. A capacity >100 mA h g −1 is retained at a very high rate of 20C. Ni 5 P 4 also exhibits a low voltage of ∼0.5 V with respect to Li metal, which makes it a suitable negative electrode for LIBs. In operando 31 P NMR and 7 Li NMR are employed to probe the lithiation and de-lithiation mechanisms upon electrochemical cycling. 
    more » « less
  4. Anatase TiO2is a promising anode material for lithium‐ion batteries (LIBs) owing to its low cost and stability. However, the intrinsically kinetic limits seriously hindered its lithium‐ion storage capability. Here we present that anatase TiO2with rich oxygen vacancies can enhance its lithium‐ion storage performance. We synthesize anatase TiO2with well‐retained hierarchical structure by annealing the H2Ti5O11·3H2O yolk‐shell spheres precursor in nitrogen atmosphere. EPR and XPS data evidence that the oxygen‐deficient environment could generate abundant oxygen vacancies in the as‐derived anatase TiO2, which leads to improved electron conductivity and reduced charge‐transfer resistance. The rich oxygen vacancies and high structural integrity of the hierarchical yolk‐shell spheres enable the as‐derived anatase TiO2yolk‐shell spheres with a high specific capacity of 280 mAh g−1at 100 mA g−1and 71% of capacity retention after 5000 cycles at 2 A g−1.

     
    more » « less
  5. Molybdenum disulfide (MoS 2 ) may be a promising alternative for lithium ion batteries (LIBs) because it offers a unique layered crystal structure with a large and tunable distance between layers. This enables the anticipated excellent rate and cycling stability because they can promote the reversible lithium ion intercalation and de-intercalation without huge volume change which consequently prevents the pulverization of active materials during repeated charge and discharge processes. Herein, we prepared hierarchical MoS 2 –carbon (MoS 2 –C) microspheres via a continuous and scalable ultrasonic nebulization assisted route. The structure, composition, and electrochemical properties are investigated in detail. The MoS 2 –C microspheres consist of few-layer MoS 2 nanosheets bridged by carbon, which separates the exfoliated MoS 2 layers and prevents their aggregation and restacking, thus leading to improved kinetic, enhanced conductivity and structural integrity. The novel architecture offers additional merits such as overall large size and high packing density, which promotes their practical applications. The MoS 2 –C microspheres have been demonstrated with excellent electrochemical performances in terms of low resistance, high capacity even at large current density, stable cycling performance, etc. The electrodes exhibited 800 mA h g −1 at 1000 mA g −1 over 170 cycles. At a higher current density of 3200 mA g −1 , a capacity of 730 mA h g −1 can be also maintained. The MoS 2 –C microspheres are practically applicable not only because of the continuous and large scale synthesis via the current strategy, but also the possess a robust and integrated architecture which ensures the excellent electrochemical properties. 
    more » « less