Additive manufacturing has been used to develop a variety of scaffold designs for clinical and industrial applications. Mechanical properties (i.e., compression, tension, bending, and torsion response) of these scaffolds are significantly important for load-bearing orthopaedic implants. In this study, we designed and additively manufactured porous metallic biomaterials based on two different types of triply periodic minimal surface structures (i.e., gyroid and diamond) that mimic the mechanical properties of bone, such as porosity, stiffness, and strength. Physical and mechanical properties, including compressive, tensile, bending, and torsional stiffness and strength of the developed scaffolds, were then characterised experimentally and numerically using finite element method. Sheet thickness was constant at 300 μm, and the unit cell size was varied to generate different pore sizes and porosities. Gyroid scaffolds had a pore size in the range of 600–1200 μm and a porosity in the range of 54–72%, respectively. Corresponding values for the diamond were 900–1500 μm and 56–70%. Both structure types were validated experimentally, and a wide range of mechanical properties (including stiffness and yield strength) were predicted using the finite element method. The stiffness and strength of both structures are comparable to that of cortical bone, hence reducing the risks of scaffold failure. The results demonstrate that the developed scaffolds mimic the physical and mechanical properties of cortical bone and can be suitable for bone replacement and orthopaedic implants. However, an optimal design should be chosen based on specific performance requirements.
more »
« less
Design and additive manufacturing of porous titanium scaffolds for optimum cell viability in bone tissue engineering
Pore size, external shape, and internal complexity of additively manufactured porous titanium scaffolds are three primary determinants of cell viability and structural strength of scaffolds in bone tissue engineering. To obtain an optimal design with the combination of all three determinants, four scaffolds each with a unique topology (external geometry and internal structure) were designed and varied the pore sizes of each scaffold 3 times. For each topology, scaffolds with pore sizes of 300, 400, and 500 µm were designed. All designed scaffolds were additively manufactured in material Ti6Al4V by the direct metal laser melting machine. Compression test was conducted on the scaffolds to assure meeting minimum compressive strength of human bone. The effects of pore size and topology on the cell viability of the scaffolds were analyzed. The 12 scaffolds were ultrasonically cleaned and seeded with NIH3T3 cells. Each scaffold was seeded with 1 million cells. After 32 days of culturing, the cells were fixed for their three-dimensional architecture preservation and to obtain scanning electron microscope images.
more »
« less
- Award ID(s):
- 1712391
- PAR ID:
- 10186231
- Date Published:
- Journal Name:
- Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
- ISSN:
- 0954-4054
- Page Range / eLocation ID:
- 095440542093756
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Due to the three-dimensional nature of the 3D bio-printed scaffolds, typical stagnant cell culturing methods don’t ensure entering medium inside areas or passing through the scaffolds. The bioreactor has frequently provided the required growth medium to encapsulated- and seeded-cells in 3D bio-printed scaffolds. To address this issue, we developed a customized perfusion bioreactor to supply the growth medium dynamically to the cells encapsulated or seeded in the scaffolds. The dynamic supply of fresh growth medium may help improve cell viability and proliferation. Because of its uniform nutrition distribution and flow-induced shear stress within the tissue-engineering scaffold, perfusion bioreactors have been used in a variety of tissue engineering applications. Including a modified setup of our designed bioreactor may improve the in vivo stimuli and conditions, eventually enhancing the overall performance of tissue regeneration. In this paper, we explored the response of fluid flow to certain types of scaffold pore geometries and porosities. We used a simulation technique to determine fluid flow turbulence through various pore geometries such as uniform triangular, square, diamond, circular, and honeycomb. We used variable pore sizes of the scaffold maintaining constant porosity to analyze the fluid flow. Based on the results, optimum designs for scaffolds were determined.more » « less
-
Abstract In tissue engineering, once a scaffold has completed mechanical property testing, it must then undergo biological characterization which determines if the scaffold is capable of supporting cell viability. To perform biological tests, cells must be seeded onto a scaffold with the help of bioreactors, the four main types being: (i) rotating wall, (ii) spinner flask, (iii) compression, and (iv) perfusion bioreactor. In perfusion bioreactors, a consistent flow of material is introduced (using a pump) into the inlet of the bioreactor chamber where multiple scaffolds of a disc geometry are located. However, the intrinsic, complex interaction between the scaffolds and material flow as it goes through the bioreactor chamber affects the viability of the seeded stem cells. Therefore, there is a need to identify consequential fluid dynamics phenomena governing the material flow in a perfusion bioreactor. In this study, using a CFD model, the effects of critical scaffold parameters (such as the number of scaffolds, scaffold diameter, scaffold thickness, and number of pores) on the main flow properties (i.e., flow pressure, wall shear stress, and streamline velocity) influential in cell proliferation and bone development will be investigated. It was observed that increasing the number of pores, in addition to decreasing the pore diameter had an adverse effect on the maximum forces occurring on the scaffold. In addition, changing the overall scaffold diameter did not appear to have as much as an effect as the other parameters. Furthermore, it was observed that a decrease in porosity would lead to an increase in wall shear stress and consequently in cell death. Overall, the outcomes of this study pave the way for optimal design, fabrication, and preparation of cell-laden bone scaffolds for treatment of bone fractures in clinical settings.more » « less
-
Nguyen, Thao Vicky; Ethier, C Ross (Ed.)Abstract Cell-laden, scaffold-based tissue engineering methods have been successfully utilized for the treatment of bone fractures and diseases, caused by factors such as trauma, tumors, congenital anomalies, and aging. In such methods, the rate of scaffold biodegradation, transport of nutrients and growth factors, as well as removal of cell metabolic wastes at the site of injury are critical fluid-dynamics factors, affecting cell proliferation and ultimately tissue regeneration. Therefore, there is a critical need to identify the underlying material transport mechanisms and factors associated with cell-seeded, scaffold-based bone tissue engineering. The overarching goal of this study is to contribute to patient-specific, clinical treatment of bone pathology. The overall objective of the work is to establish computational fluid dynamics (CFD) models: (i) to identify the consequential mechanisms behind internal and external material transport through/over porous bone scaffolds designed based on the principles of triply periodic minimal surfaces (TPMS) and (ii) to identify TPMS designs with optimal geometry and flow characteristics for the treatment of bone fractures in clinical practice. In this study, advanced CFD models were established based on ten TPMS scaffold designs for (i) single-unit internal flow analysis, (ii) single-unit external flow analysis, and (iii) cubic, full-scaffold external flow analysis, where the geometry of each design was parametrically created. The influence of several design parameters, such as surface representation iteration, wall thickness, and pore size on geometry accuracy as well as computation time, was investigated in order to obtain computationally efficient and accurate CFD models. The fluid properties (such as density and dynamic viscosity) as well as the boundary conditions (such as no-slip condition, inlet flow velocity, and pressure outlet) of the CFD models were set based on clinical/research values reported in the literature, according to the fundamentals of internal and external Newtonian flow modeling. The main fluid characteristics influential in bone regeneration, including flow velocity, flow pressure, and wall shear stress (WSS), were analyzed to observe material transport internally through and externally over the TPMS scaffold designs. Regarding the single-unit internal flow analysis, it was observed that P.W. Hybrid and Neovius designs had the highest level of not only flow pressure but also WSS. This can be attributed to their relatively flat surfaces when compared to the rest of the TPMS designs. Schwarz primitive (P) appeared to have the lowest level of flow pressure and WSS (desirable for development of bone tissues) due to its relatively open channels allowing for more effortless fluid transport. An analysis of streamline velocity exhibited an increase in velocity togther with a depiction of potential turbulent motion along the curved sections of the TPMS designs. Regarding the single-unit external flow analysis, it was observed that Neovius and Diamond yielded the highest level of flow pressure and WSS, respectively, while Schwarz primitive (P) similarly had a relatively low level of flow pressure and WSS suitable for bone regeneration. Besides, pressure buildup was observed within the inner channels of almost all the TPMS designs due to flow resistance and the intrinsic interaction between the fluid flow and the scaffold walls. Regarding the cubic (full-scaffold) external flow analysis, the Diamond and Schwarz gyroid (G) designs appeared to have a relatively high level of both flow pressure and WSS, while Schwarz primitive (P) similarly yielded a low level of flow pressure and WSS. Overall, the outcomes of this study pave the way for optimal design and fabrication of complex, bone-like tissues with desired material transport properties for cell-laden, scaffold-based treatment of bone fractures.more » « less
-
Babski-Reeves, K; Eksioglu, B; Hampton, D. (Ed.)Traditional static cell culture methods don't guarantee access to medium inside areas or through the scaffolds because of the complex three-dimensional nature of the 3D bio-printed scaffolds. The bioreactor provides the necessary growth medium encapsulated and seeded cells in 3D bioprinted scaffolds. The constant flow of new growing medium could promote more viable and multiplying cells. Therefore, we created a specialized perfusion bioreactor that dynamically supplies the growth medium to the cells implanted or encapsulated in the scaffolds. A redesigned configuration of our developed bioreactor may enhance the in vivo stimuli and circumstances, ultimately improving the effectiveness of tissue regeneration. This study investigated how different scaffold pore shapes and porosities affect the flow. We employed a simulation technique to calculate fluid flow turbulence across several pore geometries, including uniform triangular, square, circular, and honeycomb. We constructed a scaffold with changing pore diameters to examine the fluid movement while maintaining constant porosity. The impact of fluid flow was then determined by simulating and mimicking the architecture of bone tissue. The best scaffold designs were chosen based on the findings.more » « less
An official website of the United States government

