skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adaptive learning environment for high value manufacturing (HVM) geared towards energy industry
This paper presents a project framework for the development of an adaptive learning environment to provide a wide range of students with the skills necessary to work in high value manufacturing (HVM) aimed at the energy industry. More specifically, it discusses a HVM certificate program being developed at Houston Community College (HCC) in collaboration with Texas A&M University (TAMU). The aim of the project is to create a sustainable certificate program in HVM that provides multiple pathways for community college students while meeting the critical workforce needs of a vital industry in Texas. The novelty of the certificate program includes innovative pedagogical methods, such as competency-based learning and skills need assessment and provision through online learning modules is presented; this allows students an adaptive and personalized education in this needed area. Upon completion of the certificate program, the community college students will have multiple pathways including: a) an A.S. at the Community College; b) transfer to four year institution; and c) return to industry to join the workforce. By incorporating a new co-educational paradigm between the community college and the university, as opposed to traditional articulation agreements, this project provides a novel pathway for community college students to transition to a four-year degree program. It also incorporates a new method for trying to ensure that community college students who matriculate to partner 4-year institutions receive reverse transfer credit for their associate degrees at their home community college. Furthermore, HVM modules are developed for high school students that are aligned with the Next Generation Science Standards.  more » « less
Award ID(s):
1501952
PAR ID:
10186248
Author(s) / Creator(s):
Date Published:
Journal Name:
ASEE annual conference
ISSN:
0190-1052
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In January 2020 East Carolina University (ECU) in partnership with Lenoir Community College (LCC), Pitt Community College (PCC), and Wayne Community College (WCC) was awarded an S-STEM Track 3 Grant (Grant number: 1930497). The purpose of this grant was to support low-income students at each partner institution, to research best practices in recruiting and retaining low-income students at both universities and community colleges, and to research how such programs influence the transfer outcomes from two-year to four-year schools. This grant provides scholarship support for two cohorts of students, one starting their engineering studies in Fall 2020 and the other starting their engineering studies in Fall 2021. Each cohort was to be comprised of 40 students including 20 students at ECU and 20 students divided among the three partnering community colleges. In addition to supporting student scholarships, this grant supported the establishment of new student support mechanisms and enhancement of existing support systems on each campus. This project involved the creation of a faculty mentoring program, designing a summer bridge program, establishing a textbook lending library, and enhancing activities for students in a living-learning community, expansion of university tutoring initiatives to allow access for community college students, and promoting a new peer mentoring initiative. The program emphasizes career opportunities including promoting on-campus career fairs, promoting internship and co-op opportunities, and bringing in guest speakers from various industry partners. A goal of the program was to allow community college students to build relationships with university students and faculty so they can more easily assimilate into the student body at the university upon transfer. This paper presents the challenges presented to the project in the first year and the pivoting that occurred due the pandemic. Data is presented regarding recruitment of scholars in both cohorts and retention of scholars from year 1 to year 2. 
    more » « less
  2. This project, supported by NSF ATE (award#2202107), aims to serve the national interest by addressing the shortage of technicians possessing the skills to maintain programmable logic controllers (PLCs) and robots in the service industries. Vaughn College program offers a PLC and Robotic Automation (PRA) Technician Certificate, consisting of 13 credits. It prepares technicians for roles in diverse service industries such as wholesale and retail, pharmaceuticals, food, and beverage, as well as airport baggage and cargo handling [1][2][3]. Additionally, all credits earned through the certificate program are transferable to the college's Mechatronic Engineering program. The college, designated as a Hispanic-Serving Institution, places a strong emphasis on recruiting students from low-income families and underrepresented racial and ethnic groups. The certificate program alleviates the financial burden and time commitment required for students to pursue education, providing them with the means to pursue advanced degrees or offer support to family members seeking greater opportunities. The project’s objective is to establish a one-year certificate program to provide PRA technicians with the essential skills for service industries. To ensure program graduates possess the desired qualifications, the project (a) collaborates with its Business and Industry Leadership Team (BILT) to identify industry needs and develop a curriculum to address them; (b) supports faculty in obtaining training and industry certifications; (c) recruits both high-school graduates, incumbent workers, and college students through newly developed informational materials. Additionally, to enhance diversity within the PRA Technician workforce, the program will collaborate with the college’s existing initiatives to attract more female and racial and ethnic minorities. Advancements in the comprehension of technical education for service industries are disseminated through the college website and presented at regional and national conferences [4]. 
    more » « less
  3. Over the last decade, the emergence of technician education has taken center stage at secondary and post-secondary educational institutions through the proliferation of industry needs and employer-partner engagement. Through employer-partner engagement, Southern University at Shreveport, Louisiana (SUSLA), a community college unit within the Southern University and A&M College System, conducted a systematic review, assessment, and revision of its curricula that addressed the needs of industry. SUSLA’s comprehensive assessment, guided by employer-partner input, community college and 4-year university collaborations, and published workforce data, identified a pressing need to develop an Engineering Technology program. To that end, SUSLA developed a 2+2+2 Matriculation Model within the Engineering Technology associate of applied science degree program designed as a gateway to enable early education, persistence to post-secondary credentials of value, and high-quality career outcomes. Programs with similar demographics may be able to use this as a model which aims to do four things: 1) facilitate the early engagement of students decreasing the number of academically underprepared learners entering college, 2) expand postsecondary educational opportunities to improve outcomes fostering economic opportunity 3) increase the enrollment, persistence and graduation of early education and underserved populations in STEM and, 4) facilitate a reduction in time to degree. SUSLA’s 2+2+2 Matriculation Model provides high school students with the opportunity to earn dual-enrollment post-secondary credentials through its certificate of technical offerings in Engineering and Engineering Technology. Additionally, the model facilitates an increase in the participation rate of students in STEM and provides more academic opportunities and career exploration through collaborative industry-academic networks. Furthermore, the model produces workforce-ready technicians which accelerates academic and technical skill attainment and, thereby addresses a) the shortage in moderate to middle-skill jobs that require some college, but less than a bachelor’s degree; and b) the ongoing need for highly skilled STEM graduates to maintain the nation’s competitiveness in productivity and innovation. 
    more » « less
  4. Cloud migration has accelerated and companies around the world are investing their technological future with the cloud. Given the growing industry demand for cloud related skills, Miami Dade College partnered with the industry leader in cloud computing solutions Amazon Web Services (AWS). In conjunction with AWS, we developed a new cloud-based learning curriculum designed to provide an academic gateway for the next generation of computing technicians to meet local and national workforce demands. The recruitment population focused on predominantly minoritized and low-income populations. This certificate-based curriculum is designed as stackable for both the successful completion of a College Credit Certificate and/or an Associate of Science in Networking Technology with a concentration in Enterprise Cloud Computing. The curriculum was developed in alignment with industry needs and utilizes high impact educational practices. The cloud computing programs prepare students to potentially earn an academic credential and globally recognized industry certifications at the entry (college credit certificate) and associate levels. Ensuring students are offered the highest standard of training, faculty members completed professional development in cloud computing, earning industry-recognized credentials to become AWS-accredited instructors. The current cohort of faculty certified to teach in the AWS Academy is the largest group of certified instructors in the academic arena. The inclusion of industry standard certifications from major cloud providers allows for consistency of program evaluation and instructors assessment of student work and course comprehension. The net effect of these certifications is not only earned degrees, but employer ability to validate prospective employee skill and knowledge outside of an academic environment. This paper presents the approach followed in developing in-depth, project-based learning opportunities using cutting-edge technology for the new academic pathway in cloud literacy and the program outcomes. A discussion on the best practices and lessons learned while implementing the first year of the program is included. 
    more » « less
  5. The importance of authenticity has been examined in various aspects of education; this is especially true in the area of engineering education where most graduates will matriculate to industry. However, the importance of applied and authentic examples could be even more critical in workforce development programs. In these cases, students are often enrolled with a goal of using their acquired knowledge to advance their career or move into a new role. Purely theoretical or stylized examples would not be aligned with the educational goals of these students. As part of a National Science Foundation Advanced Technological Education grant, a certificate program in high value manufacturing (HVM) has been developed. The certificate program is a collaboration between a research intensive four-year institution and an urban community college. In this certificate program students will be taking courses in manufacturing processes, design, and other business-related subjects that are pertinent to the manufacture of low volume components that have high materials costs, stringent quality requirements, and critical project timelines. This unique content area requires example that comprise these pertinent aspects of HVM. This is particularly true of the five newly developed courses covering materials, project management, quality, logistics, and computer-aided design. While the analogous courses at a four-year degree granting institution would likely use stylized examples in these courses, this would not be preferable in an applied certificate program. This work discusses the acquisition and refinement of authentic and applied examples that are applicable to the HVM environment. Specifically, the use of industry contacts and the translation of examples into useable and appropriate examples are examined. These examples are detailed and compared to traditional stylized academic content. A methodology for examining student perceptions of these examples is also proposed. A discussion of the importance of authenticity in applied certificate programs is also presented. 
    more » « less