skip to main content


Title: Lightning effects in the ionosphere over the Arecibo Observatory
In the last couple of decades, substantial research has been dedicated to understanding the coupling between atmospheric regions. Research on transient luminous events (TLEs) appeared and quickly intensified with the promise of TLEs serving as an optical remote sensing tool of the mesosphere and lower ionosphere. However, to date it remains challenging to obtain quantitative estimates of electron density changes in the ionospheric D region due to underlying lightning and thunderstorms. Arecibo’s incoherent scatter radar (ISR) capabilities for measuring ionospheric electron density with high resolution (300-m spatial resolution in the present study), combined with its tropical location in a region of high lightning incidence rates, indicate a potentially transformative pathway to address this problem. Through a systematic survey, we show that sudden electron density changes registered by Arecibo’s ISR during thunderstorm times are on average different than the ones happening during fair weather conditions (driven by other external factors). Electron density changes happening coincidentally with lightning activity have typical amplitudes of 10–90% between 80–90 km altitude, and in a selected number of cases can be reasonably correlated to underlying lightning activity.  more » « less
Award ID(s):
1917069
NSF-PAR ID:
10186573
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the General Assembly and Scientific Symposium (GASS) of the International Union of Radio Science (URSI)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Optical observations of transient luminous events and remote-sensing of the lower ionosphere with low-frequency radio waves have demonstrated that thunderstorms and lightning can have substantial impacts in the nighttime ionospheric D region. However, it remains a challenge to quantify such effects in the daytime lower ionosphere. The wealth of electron density data acquired over the years by the Arecibo Observatory incoherent scatter radar (ISR) with high vertical spatial resolution (300-m in the present study), combined with its tropical location in a region of high lightning activity, indicate a potentially transformative pathway to address this issue. Through a systematic survey, we show that daytime sudden electron density changes registered by Arecibo’s ISR during thunderstorm times are on average different than the ones happening during fair weather conditions (driven by other external factors). These changes typically correspond to electron density depletions in the D and E region. The survey also shows that these disturbances are different than the ones associated with solar flares, which tend to have longer duration and most often correspond to an increase in the local electron density content.

     
    more » « less
  2. Abstract

    E‐region models have traditionally underestimated the ionospheric electron density. We believe that this deficiency can be remedied by using high‐resolution photoabsorption and photoionization cross sections in the models. Deep dips in the cross sections allow solar radiation to penetrate deeper into the E‐region producing additional ionization. To validate our concept, we perform a study of model electron density profiles (EDPs) calculated using the Atmospheric Ultraviolet Radiance Integrated Code (AURIC; D. Strickland et al., 1999,https://doi.org/10.1016/s0022-4073(98)00098-3) in the E‐region of the terrestrial ionosphere. We compare AURIC model outputs using new high‐resolution photoionization and photoabsorption cross sections, and solar spectral irradiances during low solar activity with incoherent scatter radar (ISR) measurements from the Arecibo and Millstone Hills observatories, Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC‐1) observations, and outputs from empirical models (IRI‐2016 and FIRI‐2018). AURIC results utilizing the new high‐resolution cross sections reveal a significant difference to model outputs calculated with the low‐resolution cross sections currently used. Analysis of AURIC EDPs using the new high‐resolution data indicate fair agreement with ISR measurements obtained at various times at Arecibo but very good agreement with Millstone Hills ISR observations from ∼96–140 km. However, discrepancies in the altitude of the E‐region peak persist. High‐resolution AURIC calculations are in agreement with COSMIC‐1 observations and IRI‐2016 model outputs between ∼105 and 140 km while FIRI‐2018 outputs underestimate the EDP in this region. Overall, AURIC modeling shows increased E‐region electron densities when utilizing high‐resolution cross sections and high‐resolution solar irradiances, and are likely to be the key to resolving the long standing data‐model discrepancies.

     
    more » « less
  3. Abstract

    We present a new four‐parameter model of theD‐region (60–90 km) ionospheric electron density, useful in very low frequency (VLF, 3–30 kHz) remote sensing. VLF waves have a long history of use to indirectly inferD‐region conditions, as they reflect efficiently and thus are sensitive to small changes in the electron density. Most historical efforts use VLF observations along with a forward model of theD‐region and VLF propagation. The ionospheric assumptions in the forward model are altered until the output matches the observation. The most commonD‐region model, known as the Wait‐Spies ionosphere, takes the electron density as exponentially increasing with altitude and specifies a height and steepness. This model was designed to capture the VLF propagation variations evident at a single frequency. The realD‐region is likely more complex. The limited number ofD‐region rocket passes that have previously been compiled tend to show the existence of a “ledge” somewhere between 70 and 90 km. Broadband VLF signals emitted from lightning allows a more sophisticated parametrization. Using carefully averaged amplitudes and phases of VLF sferics, we formulate a more general four‐parameterD‐region model that includes a ledge discontinuity. Using lightning‐emitted VLF observations along with a theoretical model, we find that this model better describes the ionosphere during the daytime. During the ambient nighttime and during a solar flare the two‐parameter ionosphere may be sufficient, at least for the purposes of calculating broadband VLF propagation, since the ledge either weakens or moves outside the altitude range of VLF sensitivity.

     
    more » « less
  4. Abstract

    We demonstrate a methodology for utilizing measurements from very low frequency (VLF, 3−30 kHz) transmitters and lightning emissions to produce 3D lower electron density maps, and apply it to multiple geophysical disturbances. The D‐region lower ionosphere (60−90 km) forms the upper boundary of the Earth‐ionosphere waveguide which allows VLF radio waves to propagate to global distances. Measurements of these signals have, in many prior studies, been used to infer path‐average electron density profiles within the D region. Historically, researchers have focused on either measurements of VLF transmitters or radio atmospherics (sferics) from lightning. In this work, we build on recently published methods for each and present a method to unify the two approaches via tomography. The output of the tomographic inversion produces maps of electron density over a large portion of the United States and Gulf of Mexico. To illustrate the benefits of this unified approach, daytime and nighttime maps are compared between a sferic‐only model and the new approach suggested here. We apply the model to characterize two geophysical disturbances: solar flares and lower ionospheric changes associated with thunderstorms.

     
    more » « less
  5. Abstract

    Previous studies have shown that solar flares can significantly affect Earth's ionosphere and induce ion upflow with a magnitude of ∼110 m/s in the topside ionosphere (∼570 km) at Millstone Hill (42.61°N, 71.48°W). We use simulations from the Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (TIEGCM) and observations from Incoherent Scatter Radar (ISR) at Millstone Hill to reveal the mechanism of ionospheric ion upflow near the X9.3 flare peak (07:16 LT) on 6 September 2017. The ISR observed ionospheric upflow was captured by the TIEGCM in both magnitude and morphology. The term analysis of the F‐region ion continuity equation during the solar flare shows that the ambipolar diffusion enhancement is the main driver for the upflow in the topside ionosphere, while ion drifts caused by electric fields and neutral winds play a secondary role. Further decomposition of the ambipolar diffusive velocity illustrates that flare‐induced changes in the vertical plasma density gradient is responsible for ion upflow. The changes in the vertical plasma density gradient are mainly due to solar extreme ultraviolet (EUV, 15.5–79.8 nm) induced electron density and temperature enhancements at the F2‐region ionosphere with a minor and indirectly contribution from X‐ray (0–15.5 nm) and ultraviolet (UV, 79.8–102.7 nm).

     
    more » « less