skip to main content

Title: Single-pass Cr:ZnSe amplifier for broadband infrared undulator radiation

An amplifier based on a highly-doped chromium zinc-selenide (Cr:ZnSe) crystal is proposed to increase the pulse energy emitted by an electron bunch after it passes through an undulator magnet. The primary motivation is a possible use of the amplified undulator radiation emitted by a beam circulating in a particle accelerator storage ring to increase the particle beam’s phase-space density—a technique dubbed optical stochastic cooling (OSC). This paper uses a simple four energy level model to estimate the single-pass gain of Cr:ZnSe and presents numerical calculations combined with wave-optics simulations of undulator radiation to estimate the expected properties of the amplified undulator wave-packet.

; ;
Publication Date:
Journal Name:
Optics Express
Page Range or eLocation-ID:
Article No. 26601
1094-4087; OPEXFF
Optical Society of America
Sponsoring Org:
National Science Foundation
More Like this
  1. Extremely high beam-to-radiation energy conversion efficiencies can be obtained in a THz FEL using a strongly tapered helical undulator at the zero-slippage resonant condition, where a circular waveguide is used to match the radiation group velocity to the electron beam longitudinal velocity. In this paper we report on the first electro-optic sampling (EOS) based measurements of the broadband THz FEL radiation pulses emitted in this regime. The THz field waveforms are reconstructed in the spatial and temporal domains using multi-shot and single-shot EOS schemes respectively. The measurements are performed varying the input electron beam energy in the undulator providing insights on the complex dynamics in a waveguide FEL.

  2. ABSTRACT The afterglow emission from gamma-ray bursts (GRBs) is believed to originate from a relativistic blast wave driven into the circumburst medium. Although the afterglow emission from radio up to X-ray frequencies is thought to originate from synchrotron radiation emitted by relativistic, non-thermal electrons accelerated by the blast wave, the origin of the emission at high energies (HE; ≳GeV) remains uncertain. The recent detection of sub-TeV emission from GRB 190114C by the Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) raises further debate on what powers the very high energy (VHE; ≳300 GeV) emission. Here, we explore the inverse Compton scenario as a candidate for the HE and VHE emissions, considering two sources of seed photons for scattering: synchrotron photons from the blast wave (synchrotron self-Compton or SSC) and isotropic photon fields external to the blast wave (external Compton). For each case, we compute the multiwavelength afterglow spectra and light curves. We find that SSC will dominate particle cooling and the GeV emission, unless a dense ambient infrared photon field, typical of star-forming regions, is present. Additionally, considering the extragalactic background light attenuation, we discuss the detectability of VHE afterglows by existing and future gamma-ray instruments for a wide range of model parameters.more »Studying GRB 190114C, we find that its afterglow emission in the Fermi-Large Area Telescope (LAT) band is synchrotron dominated. The late-time Fermi-LAT measurement (i.e. t ∼ 104 s), and the MAGIC observation also set an upper limit on the energy density of a putative external infrared photon field (i.e. ${\lesssim} 3\times 10^{-9}\, {\rm erg\, cm^{-3}}$), making the inverse Compton dominant in the sub-TeV energies.« less
  3. Abstract

    We examine the possibility that fast radio bursts (FRBs) are emitted inside the magnetosphere of a magnetar. On its way out, the radio wave must interact with a low-densitye±plasma in the outer magnetosphere at radiiR= 109–1010cm. In this region, the magnetospheric particles have a huge cross section for scattering the wave. As a result, the wave strongly interacts with the magnetosphere and compresses it, depositing the FRB energy into the compressed field and the scattered radiation. The scattered spectrum extends to theγ-ray band and triggerse±avalanche, further boosting the opacity. These processes choke FRBs, disfavoring scenarios with a radio source confined atR≪ 1010cm. Observed FRBs can be emitted by magnetospheric flare ejecta transporting energy to large radii.

  4. Abstract The longitudinal coherence of X-ray free-electron lasers (XFELs) in the self-amplified spontaneous emission regime could be substantially improved if the high brightness electron beam could be pre-bunched on the radiated wavelength-scale. Here, we show that it is indeed possible to realize such current modulated electron beam at angstrom scale by exciting a nonlinear wake across a periodically modulated plasma-density downramp/plasma cathode. The density modulation turns on and off the injection of electrons in the wake while downramp provides a unique longitudinal mapping between the electrons’ initial injection positions and their final trapped positions inside the wake. The combined use of a downramp and periodic modulation of micrometers is shown to be able to produces a train of high peak current (17 kA) electron bunches with a modulation wavelength of 10’s of angstroms - orders of magnitude shorter than the plasma density modulation. The peak brightness of the nano-bunched beam can be O (10 21 A/m 2 /rad 2 ) orders of magnitude higher than current XFEL beams. Such prebunched, high brightness electron beams hold the promise for compact and lower cost XEFLs that can produce nanometer radiation with hundreds of GW power in a 10 s of centimeter longmore »undulator.« less
  5. Fault damage zones can influence various aspects of the earthquake cycle, such as the recurrence intervals and magnitudes of large earthquakes. The properties and structure of fault damage zones are often characterized using dense arrays of seismic stations located directly above the faults. However, such arrays may not always be available. Hence, our research aims to develop a novel method to image fault damage zones using broadband stations at relatively larger distances. Previous kinematic simulations and a case study of the 2003 Big Bear earthquake sequence demonstrated that fault damage zones can act as effective waveguides, amplifying high-frequency waves along directions close to fault strike via multiple reflections within the fault damage zone. The amplified high-frequency energy can be observed using the stacked P-wave spectra of earthquake clusters with highly-similar waveforms (Huang et al., 2016). We attempt to identify the high-frequency peak associated with fault zone waves in stacked spectra by conducting a large-scale study of small earthquakes (M1.5–3). We use high quality broadband data from seismic stations at hypocentral distances of 20-100km in the 2004 Parkfield and 2019 Ridgecrest earthquake regions. First, we group earthquakes in clusters by their locations and their waveform similarity, and then stack their velocitymore »spectra to average the source effects of individual earthquakes. We applied our method to the 2019 Ridgecrest earthquake sequence, and our preliminary results show that stations close to the fault strike tend to record more high-frequency energies around the characteristic frequency of fault zone reflections. The frequency bands in which amplified high-frequency energies are observed may be used to estimate the width and velocity contrast of the fault damage zone. We aim to develop a robust and versatile method that can be used to search for fault damage zone structures and estimate their material properties, in order to shed light on earthquake source processes.« less