skip to main content


Title: Optical timing jitter due to atmospheric turbulence: comparison of frequency comb measurements to predictions from micrometeorological sensors

During propagation through atmospheric turbulence, variations in the refractive index of air cause fluctuations in the time-of-flight of laser light. These timing jitter fluctuations are a major noise source for precision laser ranging, optical time transfer, and long-baseline interferometry. While there exist models that estimate the turbulence-induced timing jitter power spectra using parameters obtainable from conventional micrometeorological instruments, a direct and independent comparison of these models to measured timing jitter data has not been done. Here we perform this comparison, measuring turbulence-induced optical pulse timing jitter over a horizontal, near-ground path using frequency comb lasers while independently characterizing the turbulence along the path using a suite of micrometeorological sensors. We compare the power spectra of measured optical pulse timing jitter to predictions based on the measured micrometeorological data and standard turbulence theory. To further quantitatively compare the frequency comb data to the micrometeorological measurements, we extract and compare the refractive index structure parameter,Cn2, from both systems and find agreement to within a factor of 5 for wind speed >1 m/s, and further improvement is possible as wind speed increases. These results validate the use of conventional micrometeorological instruments in predicting optical timing jitter statistics over co-located laser beam paths.

 
more » « less
NSF-PAR ID:
10186636
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
28
Issue:
18
ISSN:
1094-4087; OPEXFF
Page Range / eLocation ID:
Article No. 26661
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BACKGROUND Electromagnetic (EM) waves underpin modern society in profound ways. They are used to carry information, enabling broadcast radio and television, mobile telecommunications, and ubiquitous access to data networks through Wi-Fi and form the backbone of our modern broadband internet through optical fibers. In fundamental physics, EM waves serve as an invaluable tool to probe objects from cosmic to atomic scales. For example, the Laser Interferometer Gravitational-Wave Observatory and atomic clocks, which are some of the most precise human-made instruments in the world, rely on EM waves to reach unprecedented accuracies. This has motivated decades of research to develop coherent EM sources over broad spectral ranges with impressive results: Frequencies in the range of tens of gigahertz (radio and microwave regimes) can readily be generated by electronic oscillators. Resonant tunneling diodes enable the generation of millimeter (mm) and terahertz (THz) waves, which span from tens of gigahertz to a few terahertz. At even higher frequencies, up to the petahertz level, which are usually defined as optical frequencies, coherent waves can be generated by solid-state and gas lasers. However, these approaches often suffer from narrow spectral bandwidths, because they usually rely on well-defined energy states of specific materials, which results in a rather limited spectral coverage. To overcome this limitation, nonlinear frequency-mixing strategies have been developed. These approaches shift the complexity from the EM source to nonresonant-based material effects. Particularly in the optical regime, a wealth of materials exist that support effects that are suitable for frequency mixing. Over the past two decades, the idea of manipulating these materials to form guiding structures (waveguides) has provided improvements in efficiency, miniaturization, and production scale and cost and has been widely implemented for diverse applications. ADVANCES Lithium niobate, a crystal that was first grown in 1949, is a particularly attractive photonic material for frequency mixing because of its favorable material properties. Bulk lithium niobate crystals and weakly confining waveguides have been used for decades for accessing different parts of the EM spectrum, from gigahertz to petahertz frequencies. Now, this material is experiencing renewed interest owing to the commercial availability of thin-film lithium niobate (TFLN). This integrated photonic material platform enables tight mode confinement, which results in frequency-mixing efficiency improvements by orders of magnitude while at the same time offering additional degrees of freedom for engineering the optical properties by using approaches such as dispersion engineering. Importantly, the large refractive index contrast of TFLN enables, for the first time, the realization of lithium niobate–based photonic integrated circuits on a wafer scale. OUTLOOK The broad spectral coverage, ultralow power requirements, and flexibilities of lithium niobate photonics in EM wave generation provides a large toolset to explore new device functionalities. Furthermore, the adoption of lithium niobate–integrated photonics in foundries is a promising approach to miniaturize essential bench-top optical systems using wafer scale production. Heterogeneous integration of active materials with lithium niobate has the potential to create integrated photonic circuits with rich functionalities. Applications such as high-speed communications, scalable quantum computing, artificial intelligence and neuromorphic computing, and compact optical clocks for satellites and precision sensing are expected to particularly benefit from these advances and provide a wealth of opportunities for commercial exploration. Also, bulk crystals and weakly confining waveguides in lithium niobate are expected to keep playing a crucial role in the near future because of their advantages in high-power and loss-sensitive quantum optics applications. As such, lithium niobate photonics holds great promise for unlocking the EM spectrum and reshaping information technologies for our society in the future. Lithium niobate spectral coverage. The EM spectral range and processes for generating EM frequencies when using lithium niobate (LN) for frequency mixing. AO, acousto-optic; AOM, acousto-optic modulation; χ (2) , second-order nonlinearity; χ (3) , third-order nonlinearity; EO, electro-optic; EOM, electro-optic modulation; HHG, high-harmonic generation; IR, infrared; OFC, optical frequency comb; OPO, optical paramedic oscillator; OR, optical rectification; SCG, supercontinuum generation; SHG, second-harmonic generation; UV, ultraviolet. 
    more » « less
  2. Laser-induced refractive index change (LIRIC) is being developed as a non-invasive way to alter optical properties of transparent, ophthalmic materials including corneasex vivoandin vivo. This study examined the optical and biological effects of blue-LIRIC (wavelengths 400–405 nm) ofex-vivorabbit corneas. Following LIRIC treatment at low and high repetition rates (8.3 MHz and 80 MHz, respectively), we interferometrically measured optical phase change, obtained transmission electron microscopy (TEM) micrographs, and stained histological sections with collagen hybridizing peptides (CHP) to assess the structural and organizational changes caused by LIRIC at different repetition rates. Finally, we performed power and scan speed scaling experiments at three different repetition rates (1 MHz, 8.3 MHz, and 80 MHz) to study their impact on LIRIC efficacy. Histologic co-localization of CHP and LIRIC-generated green autofluorescence signals suggested that collagen denaturation had occurred in the laser-irradiated region. TEM imaging showed different ultrastructural modifications for low and high repetition rate writing, with discrete homogenization of collagen fibrils at 80 MHz, as opposed to contiguous homogenization at 8.3 MHz. Overall, this study confirmed that LIRIC efficacy can be dramatically increased, while still avoiding tissue ablation, by lowering the repetition rate from 80 MHz to 8.3 MHz. Modeling suggests that this is due to a higher, single-pulse, energy density deposition at given laser powers during 8.3 MHz LIRIC.

     
    more » « less
  3. We investigate the validity of Taylor’s hypothesis (TH) in the analysis of velocity and magnetic field fluctuations in Alfvénic solar wind streams measured by Parker Solar Probe (PSP) during the first four encounters. The analysis is based on a recent model of the spacetime correlation of magnetohydrodynamic (MHD) turbulence, which has been validated in high-resolution numerical simulations of strong reduced MHD turbulence. We use PSP velocity and magnetic field measurements from 24 h intervals selected from each of the first four encounters. The applicability of TH is investigated by measuring the parameter ϵ  =  δu 0 /√2 V ⊥ , which quantifies the ratio between the typical speed of large-scale fluctuations, δu 0 , and the local perpendicular PSP speed in the solar wind frame, V ⊥ . TH is expected to be applicable for ϵ ≲ 0.5 when PSP is moving nearly perpendicular to the local magnetic field in the plasma frame, irrespective of the Alfvén Mach number M A = V SW ∕ V A , where V SW and V A are the local solar wind and Alfvén speed, respectively. For the four selected solar wind intervals, we find that between 10 and 60% of the time, the parameter ϵ is below 0.2 and the sampling angle (between the spacecraft velocity in the plasma frame and the local magnetic field) is greater than 30°. For angles above 30°, the sampling direction is sufficiently oblique to allow one to reconstruct the reduced energy spectrum E ( k ⊥ ) of magnetic fluctuations from its measured frequency spectra. The spectral indices determined from power-law fits of the measured frequency spectrum accurately represent the spectral indices associated with the underlying spatial spectrum of turbulent fluctuations in the plasma frame. Aside from a frequency broadening due to large-scale sweeping that requires careful consideration, the spatial spectrum can be recovered to obtain the distribution of fluctuation’s energy across scales in the plasma frame. 
    more » « less
  4. Abstract

    Dissipative Kerr soliton (DKS) frequency combs—also known as microcombs—have arguably created a new field in cavity nonlinear photonics, with a strong cross-fertilization between theoretical, experimental, and technological research. Spatiotemporal mode-locking (STML) not only adds new degrees of freedom to ultrafast laser technology, but also provides new insights for implementing analogue computers and heuristic optimizers with photonics. Here, we combine the principles of DKS and STML to demonstrate the STML DKS by developing an unexplored ultrahigh-quality-factor Fabry–Pérot (FP) mesoresonator based on graded index multimode fiber (GRIN-MMF). Complementing the two-step pumping scheme with a cavity stress tuning method, we can selectively excite either the eigenmode DKS or the STML DKS. Furthermore, we demonstrate an ultralow noise microcomb that enhances the photonic flywheel performance in both the fundamental comb linewidth and DKS timing jitter. The demonstrated fundamental comb linewidth of 400 mHz and DKS timing jitter of 500 attosecond (averaging times up to 25 μs) represent improvements of 25× and 2.5×, respectively, from the state-of-the-art. Our results show the potential of GRIN-MMF FP mesoresonators as an ideal testbed for high-dimensional nonlinear cavity dynamics and photonic flywheel with ultrahigh coherence and ultralow timing jitter.

     
    more » « less
  5. Abstract

    Dissipative Kerr soliton (DKS) microcomb has emerged as an enabling technology that revolutionizes a wide range of applications in both basic science and technological innovation. Reliable turnkey operation with sub-optical-cycle and sub-femtosecond timing jitter is key to the success of many intriguing microcomb applications at the intersection of ultrafast optics and microwave electronics. Here we propose an approach and demonstrate the first turnkey Brillouin-DKS frequency comb to the best of our knowledge. Our microresonator-filtered laser design offers essential benefits, including phase insensitivity, self-healing capability, deterministic selection of the DKS state, and access to the ultralow noise comb state. The demonstrated turnkey Brillouin-DKS frequency comb achieves a fundamental comb linewidth of 100 mHz and DKS timing jitter of 1 femtosecond for averaging times up to 56 μs. The approach is universal and generalizable to various device platforms for user-friendly and field-deployable comb devices.

     
    more » « less