skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Policy challenges in mapping Internet interdomain congestion
Interconnection links connecting broadband access providers with their peers, transit providers and major content providers, are a potential point of discriminatory treatment and impairment of user experience. However, adequate data to shed light on this situation is lacking, and different actors can put forward opportunistic interpretations of data to support their points of view. In this article, we introduce a topology-aware model of interconnection to elucidate our own beliefs about how to measure interconnection links of access providers and how policy- makers should interpret the results. We use six case studies that show how our conceptual model can guide a critical analysis of what is or should be measured and reported, and how to soundly interpret these measurements.  more » « less
Award ID(s):
1724853
PAR ID:
10186678
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of information policy
Volume:
10
ISSN:
2158-3897
Page Range / eLocation ID:
1-44
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is significant interest in the technical and policy communities regarding the extent, scope, and consumer harm of persistent interdomain congestion. We provide empirical grounding for discussions of interdomain congestion by developing a system and method to measure congestion on thousands of interdomain links without direct access to them. We implement a system based on the Time Series Latency Probes (TSLP) technique that identifies links with evidence of recurring congestion suggestive of an under-provisioned link. We deploy our system at 86 vantage points worldwide and show that congestion inferred using our lightweight TSLP method correlates with other metrics of interconnection performance impairment. We use our method to study interdomain links of eight large U.S. broadband access providers from March 2016 to December 2017, and validate our inferences against ground-truth traffic statistics from two of the providers. For the period of time over which we gathered measurements, we did not find evidence of widespread endemic congestion on interdomain links between access ISPs and directly connected transit and content providers, although some such links exhibited recurring congestion patterns. We describe limitations, open challenges, and a path toward the use of this method for large-scale third-party monitoring of the Internet interconnection ecosystem. 
    more » « less
  2. Disagreements between Internet Service Providers (ISPs) and content providers over peering fees have risen to the level of potential government regulation. ISPs assert that content providers should pay peering fees based on the volume of downstream traffic. Content providers assert that consumers pay ISPs to transmit the content they request, and thus peering agreements should be settlement-free. We determine the fair peering fee between an ISP and a transit provider or content provider. We first consider cost sharing between an ISP and a transit provider. We derive the peering fee that equalizes their net backbone transportation costs. We illustrate how the peering fee depends on the traffic ratio and the amount of localization of that content. We then derive the peering fee between an ISP and a content provider that results in the same net cost to the ISP, and illustrate how the peering fee depends on the number of interconnection points and the amount of localization. We use these results to dispense with the ISP argument that they should be paid regardless of the amount of localization of content. 
    more » « less
  3. Disagreements over peering fees have risen to the level of potential government regulation. ISPs assert that content providers should pay them based on the volume of downstream traffic. Transit providers and content providers assert that consumers have already paid ISPs to transmit the content they request and that peering agreements should be settlement-free. Our goal is to determine the fair payment between an ISP and an interconnecting network. We consider fair cost sharing between two Tier-1 ISPs, and derive the peering fee that equalizes their net backbone transportation costs. We then consider fair cost sharing between an ISP and a transit provider. We derive the peering fee that equalizes their net backbone transportation costs, and illustrate how it depends on the traffic ratio and the amount of localization of that content. Finally, we consider the fair peering fee between an ISP and a content provider. We derive the peering fee that results in the same net cost to the ISP, and illustrate how the peering fee depends on the number of interconnection points and the amount of localization of that content. We dispense with the ISP argument that it should be paid regardless of the amount of localization of content. 
    more » « less
  4. Large Internet Service Providers (ISPs) often require that peers meet certain requirements to be eligible for free-settlement peering. The conventional wisdom is that these requirements are related to the perception of roughly equal value from the peering arrangement, but the academic literature has not yet established such a relationship. The focus of this paper is to relate the settlement-free peering requirements between two large ISPs and understand the degree to which the settlement-free peering requirements between them should apply to the peering between large ISPs and content providers. We analyze settlement-free peering requirements about the number and location of interconnection points (IXPs). Large ISPs often require interconnection at a minimum of 6 to 8 interconnection points. We find that the ISP’s traffic-sensitive cost is decreasing and convex with the number of interconnection points. We also observe that there may be little value in requiring interconnection at more than 8 IXPs. We then analyze the interconnection between a large content provider and an ISP. We show that it is rational for an ISP to agree to settlement-free peering if the content provider agrees to interconnect at a specified minimum number of interconnection points and to deliver a specified minimum proportion of traffic locally. 
    more » « less
  5. A key dimension of reproducibility in testbeds is stable performance that scales in regular and predictable ways in accordance with declarative specifications for virtual resources. We contend that reproducibility is crucial for elastic performance control in live experiments, in which testbed tenants (slices) provide services for real user traffic that varies over time. This paper gives an overview of ExoPlex, a framework for deploying network service providers (NSPs) as a basis for live inter-domain networking experiments on the ExoGENI testbed. As a motivating example, we show how to use ExoPlex to implement a virtual software-defined exchange (vSDX) as a tenant NSP. The vSDX implements security-managed interconnection of customer IP networks that peer with it via direct L2 links stitched dynamically into its slice. An elastic controller outside of the vSDX slice provisions network links and computing capacity for a scalable monitoring fabric within the tenant vSDX slice. The vSDX checks compliance of traffic flows with customer-specified interconnection policies, and blocks traffic from senders that trigger configured rules for intrusion detection in Bro security monitors. We present initial results showing the effect of resource provisioning on Bro performance within the vSDX. 
    more » « less