skip to main content

Title: Systematic versus statistical uncertainties in masses and magnifications of the Hubble Frontier Fields
ABSTRACT The Hubble Frontier Fields data, along with multiple data sets obtained by other telescopes, have provided some of the most extensive constraints on cluster lenses to date. Multiple lens modelling teams analyzed the fields and made public a number of deliverables. By comparing these results, we can then undertake a unique and vital test of the state of cluster lens modelling. Specifically, we see how well the different teams can reproduce similar magnifications and mass profiles. We find that the circularly averaged mass profiles of the fields are remarkably constrained (scatter $\lt 5{{\ \rm per\ cent}}$) at distances of 1 arcmin from the cluster core, yet magnifications can vary significantly. Averaged across the six fields, we find a bias of −6 per  cent (−17 per cent) and a scatter of ∼40 per cent (∼65 per cent) at a modest magnification of 3 (10). Statistical errors reported by individual teams are often significantly smaller than the differences among all the teams, indicating the importance of continued systematics studies in cluster lensing.
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
4771 to 4793
Sponsoring Org:
National Science Foundation
More Like this

    We present deep rest-frame UV spectroscopic observations using the Gran Telescopio Canarias of six gravitationally lensed Lyα emitters (LAEs) at 2.36 < z < 2.82 selected from the BELLS GALLERY survey. By taking the magnifications into account, we show that LAEs can be as luminous as LLyα ≃ 30 × 1042 erg s−1 and MUV ≃ −23 (AB) without invoking an AGN component, in contrast with previous findings. We measure Lyα rest-frame equivalent widths, $EW_{0}\,\rm (Ly\alpha)$, ranging from 16 to 50 Å and Lyα escape fractions, $f_{\rm esc}\, \rm (Ly\alpha)$, from 10 per cent to 40 per cent. Large $EW_{0}\, \rm (Ly\alpha)$ and $f_{\rm esc}\, \rm (Ly\alpha)$ are foundmore »predominantly in LAEs showing weak low-ionization ISM absorption (EW0 ≲ 1 Å) and narrow Lyα profiles (≲300 km s−1 FWHM) with their peak close (≲80 km s−1) to their systemic redshifts, suggestive of less scatter from low H i column densities that favours the escape of Lyα photons. We infer stellar metallicities of Z/Z⊙ ≃ 0.2 in almost all LAEs by comparing the P-Cygni profiles of the wind lines N v1240 Å and C iv1549 Å with those from stellar synthesis models. We also find a trend between MUV and the velocity offset of ISM absorption lines, such as the most luminous LAEs experience stronger outflows. The most luminous LAEs show star formation rates up to ≃180 M⊙ yr−1, yet they appear relatively blue (βUV ≃ −1.8 to −2.0) showing evidence of little dust attenuation [E(B − V) = 0.10–0.14]. These luminous LAEs may be particular cases of young starburst galaxies that have had no time to form large amounts of dust. If so, they are ideal laboratories to study the early phase of massive star formation, stellar and dust mass growth, and chemical enrichment histories of starburst galaxies at high-z.

    « less
  2. ABSTRACT We perform a cross validation of the cluster catalogue selected by the red-sequence Matched-filter Probabilistic Percolation algorithm (redMaPPer) in Dark Energy Survey year 1 (DES-Y1) data by matching it with the Sunyaev–Zel’dovich effect (SZE) selected cluster catalogue from the South Pole Telescope SPT-SZ survey. Of the 1005 redMaPPer selected clusters with measured richness $\hat{\lambda }\gt 40$ in the joint footprint, 207 are confirmed by SPT-SZ. Using the mass information from the SZE signal, we calibrate the richness–mass relation using a Bayesian cluster population model. We find a mass trend λ ∝ MB consistent with a linear relation (B ∼ 1),more »no significant redshift evolution and an intrinsic scatter in richness of σλ = 0.22 ± 0.06. By considering two error models, we explore the impact of projection effects on the richness–mass modelling, confirming that such effects are not detectable at the current level of systematic uncertainties. At low richness SPT-SZ confirms fewer redMaPPer clusters than expected. We interpret this richness dependent deficit in confirmed systems as due to the increased presence at low richness of low-mass objects not correctly accounted for by our richness-mass scatter model, which we call contaminants. At a richness $\hat{\lambda }=40$, this population makes up ${\gt}12{{\ \rm per\ cent}}$ (97.5 percentile) of the total population. Extrapolating this to a measured richness $\hat{\lambda }=20$ yields ${\gt}22{{\ \rm per\ cent}}$ (97.5 percentile). With these contamination fractions, the predicted redMaPPer number counts in different plausible cosmologies are compatible with the measured abundance. The presence of such a population is also a plausible explanation for the different mass trends (B ∼ 0.75) obtained from mass calibration using purely optically selected clusters. The mean mass from stacked weak lensing (WL) measurements suggests that these low-mass contaminants are galaxy groups with masses ∼3–5 × 1013 M⊙ which are beyond the sensitivity of current SZE and X-ray surveys but a natural target for SPT-3G and eROSITA.« less
  3. ABSTRACT Previous work has argued that atomic gas mass estimates of galaxies from 21-cm H i emission are systematically low due to a cold opaque atomic gas component. If true, this opaque component necessitates a $\sim 35{{\ \rm per\ cent}}$ correction factor relative to the mass from assuming optically thin H i emission. These mass corrections are based on fitting H i spectra with a single opaque component model that produces a distinct ‘top-hat’ shaped line profile. Here, we investigate this issue using deep, high spectral resolution H i VLA observations of M31 and M33 to test if these top-hat profiles are instead superpositionsmore »of multiple H i components along the line of sight. We fit both models and find that ${\gt}80{{\ \rm per\ cent}}$ of the spectra strongly prefer a multicomponent Gaussian model while ${\lt}2{{\ \rm per\ cent}}$ prefer the single opacity-corrected component model. This strong preference for multiple components argues against previous findings of lines of sight dominated by only cold H i. Our findings are enabled by the improved spectral resolution (0.42 ${\rm km\, s^{-1}}$), whereas coarser spectral resolution blends multiple components together. We also show that the inferred opaque atomic ISM mass strongly depends on the goodness-of-fit definition and is highly uncertain when the inferred spin temperature has a large uncertainty. Finally, we find that the relation of the H i surface density with the dust surface density and extinction has significantly more scatter when the inferred H i opacity correction is applied. These variations are difficult to explain without additionally requiring large variations in the dust properties. Based on these findings, we suggest that the opaque H i mass is best constrained by H i absorption studies.« less
  4. ABSTRACT We measure the size–mass relation and its evolution between redshifts 1 < z < 3, using galaxies lensed by six foreground Hubble Frontier Fields clusters. The power afforded by strong gravitation lensing allows us to observe galaxies with higher angular resolution beyond current facilities. We select a stellar mass limited sample and divide them into star-forming or quiescent classes based on their rest-frame UVJ colours from the ASTRODEEP catalogues. Source reconstruction is carried out with the recently released lenstruction software, which is built on the multipurpose gravitational lensing software lenstronomy. We derive the empirical relation between size and massmore »for the late-type galaxies with $M_{*}\gt 3\times 10^{9}\, \mathrm{M}_{\odot }$ at 1 < z < 2.5 and $M_{*}\gt 5\times 10^{9}\, \mathrm{M}_{\odot }$ at 2.5 < z < 3, and at a fixed stellar mass, we find galaxy sizes evolve as $R \rm _{eff} \propto (1+z)^{-1.05\pm 0.37}$. The intrinsic scatter is <0.1 dex at z < 1.5 but increases to ∼0.3 dex at higher redshift. The results are in good agreement with those obtained in blank fields. We evaluate the uncertainties associated with the choice of lens model by comparing size measurements using five different and publicly available models, finding the choice of lens model leads to a 3.7 per cent uncertainty of the median value, and ∼25  per cent scatter for individual galaxies. Our work demonstrates the use of strong lensing magnification to boost resolution does not introduce significant uncertainties in this kind of work, and paves the way for wholesale applications of the sophisticated lens reconstruction technique to higher redshifts and larger samples.« less
  5. ABSTRACT The magnifications of compact-source lenses are extremely sensitive to the presence of low-mass dark matter haloes along the entire sightline from the source to the observer. Traditionally, the study of dark matter structure in compact-source strong gravitational lenses has been limited to radio-loud systems, as the radio emission is extended and thus unaffected by microlensing which can mimic the signal of dark matter structure. An alternate approach is to measure quasar nuclear-narrow-line emission, which is free from microlensing and present in virtually all quasar lenses. In this paper, we double the number of systems which can be used formore »gravitational lensing analyses by presenting measurements of narrow-line emission from a sample of eight quadruply imaged quasar lens systems, WGD J0405−3308, HS 0810+2554, RX J0911+0551, SDSS J1330+1810, PS J1606−2333, WFI 2026−4536, WFI 2033−4723, and WGD J2038−4008. We describe our updated grism spectral modelling pipeline, which we use to measure narrow-line fluxes with uncertainties of 2–10 per cent, presented here. We fit the lensed image positions with smooth mass models and demonstrate that these models fail to produce the observed distribution of image fluxes over the entire sample of lenses. Furthermore, typical deviations are larger than those expected from macromodel uncertainties. This discrepancy indicates the presence of perturbations caused by small-scale dark matter structure. The interpretation of this result in terms of dark matter models is presented in a companion paper.« less