Abstract The inverse temperature layer (ITL) beneath water‐atmosphere interface within which temperature increases with depth has been observed from measurement of water temperature profile at an inland lake. Strong solar radiation combined with moderate wind‐driven near‐surface turbulence leads to the formation of a pronounced diurnal cycle of the ITL predicted by a physical heat transfer model. The ITL only forms during daytime when solar radiation intensity exceeds a threshold while consistently occurs during nighttime. The largest depth of the ITL is comparable to thee‐fold penetration depth of solar radiation during daytime and at least one order of magnitude deeper during nighttime. The dynamics of the ITL depth variation simulated by a physical model forced by observed water surface solar radiation and temperature is confirmed by the observed water temperature profile in the lake.
more »
« less
Sodium Resonance Wind-Temperature Lidar at PFRR: Initial Observations and Performance
A narrowband sodium resonance wind-temperature lidar (SRWTL) has been deployed at Poker Flat Research Range, Chatanika, Alaska (PFRR, 65° N, 147° W). Based on the Weber narrowband SRWTL, the PFRR SRWTL transmitter was upgraded with a state-of-the-art solid-state tunable diode laser as the seed laser. The PFRR SRWTL currently makes simultaneous measurements in the zenith and 20° off-zenith towards the north with two transmitted beams and two telescopes. Initial results for both nighttime and daytime measurements are presented. We review the performance of the PFRR SRWTL in terms of seven previous and currently operating SRWTLs. The transmitted power from the pulsed dye amplifier (PDA) is comparable with other SRWTL systems (900 mW). However, while the efficiency of the seeding and frequency shifting is comparable to other SRWTLs the efficiency of the pumping is lower. The uncertainties of temperature and wind measurements induced by photon noise at the peak of the layer with a 5 min, 1 km resolution are estimated to be ~1 K and 2 m/s for nighttime conditions, and 10 K and 6 m/s for daytime conditions. The relative efficiency of the zenith receiver is comparable to other SRWTLs (90–97%), while the efficiency of the north off-zenith receiver needs further optimization. An upgrade of the PFRR SRWTL to a full three-beam system with zenith, northward and eastward measurements is in progress.
more »
« less
- PAR ID:
- 10186838
- Date Published:
- Journal Name:
- Atmosphere
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2073-4433
- Page Range / eLocation ID:
- 98
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Land surface temperature (LST) derived from satellite observations and weather modeling has been widely used for investigating Earth surface-atmosphere energy exchange and radiation budget. However, satellite-derived LST has a trade-off between spatial and temporal resolutions and missing observations caused by clouds, while there are limitations such as potential bias and expensive computation in model calibration and simulation for weather modeling. To mitigate those limitations, we proposed a WRFM framework to estimate LST at a spatial resolution of 1 km and temporal resolution of an hour by integrating the Weather Research and Forecasting (WRF) model and MODIS satellite data using the morphing technique. We tested the framework in eight counties, Iowa, USA, including urban and rural areas, to generate hourly LSTs from June 1st to August 31st, 2019, at a 1 km resolution. Upon evaluation with in-situ LST measurements, our WRFM framework has demonstrated its ability to capture hourly LSTs under both clear and cloudy conditions, with a root mean square error (RMSE) of 2.63 K and 3.75 K, respectively. Additionally, the assessment with satellite LST observations has shown that the WRFM framework can effectively reduce the bias magnitude in LST from the WRF simulation, resulting in a reduction of the average RMSE over the study area from 4.34 K (daytime) and 4.12 K (nighttime) to 2.89 K (daytime) and 2.75 K (nighttime), respectively, while still capturing the hourly patterns of LST. Overall, the WRFM is effective in integrating the complementary advantages of satellite observations and weather modeling and can generate LSTs with high spatiotemporal resolutions in areas with complex landscapes (e.g., urban).more » « less
-
Abstract An “inverse‐temperature layer” (ITL) of water temperature increasing with depth is predicted based on physical principles and confirmed by in situ observations. Water temperature and other meteorological data were collected from a fixed platform in the middle of a shallow inland lake. The ITL persists year‐around with its depth on the order of one m varying diurnally and seasonally and shallower during daytimes than nighttimes. Water surface heat flux derived from the ITL temperature distribution follows the diurnal cycle of solar radiation up to 300 W m−2during daytime and down to 50 W m−2during nighttime. Solar radiation attenuation in water strongly influences the ITL dynamics and water surface heat flux. Water surface heat flux simulated by two non‐gradient models independent of temperature gradient, wind speed and surface roughness using the data of surface temperature and solar radiation is in close agreement with the ITL based estimates.more » « less
-
Abstract It is critical to understand how human modifications of Earth’s ecosystems are influencing ecosystem functioning, including net and gross community production ( NCP and GCP , respectively) and community respiration ( CR ). These responses are often estimated by measuring oxygen production in the light ( NCP ) and consumption in the dark ( CR ), which can then be combined to estimate GCP . However, the method used to create “dark” conditions—either experimental darkening during the day or taking measurements at night—could result in different estimates of respiration and production, potentially affecting our ability to make integrative predictions. We tested this possibility by measuring oxygen concentrations under daytime ambient light conditions, in darkened tide pools during the day, and during nighttime low tides. We made measurements every 1–3 months over one year in southeastern Alaska. Daytime respiration rates were substantially higher than those measured at night, associated with higher temperature and oxygen levels during the day and leading to major differences in estimates of GCP calculated using daytime versus nighttime measurements. Our results highlight the potential importance of measuring respiration rates during both day and night to account for effects of temperature and oxygen—especially in shallow-water, constrained systems—with implications for understanding the impacts of global change on ecosystem metabolism.more » « less
-
Abstract In this work, we investigate the effect of areawide building retrofitting on summertime, street-level outdoor temperatures in an urban district in Berlin, Germany. We perform two building-resolving, weeklong large-eddy simulations: one with nonretrofitted buildings and the other with retrofitted buildings in the entire domain to meet today’s energy efficiency standards. The comparison of the two simulations reveals that the mean outdoor temperatures are higher with retrofitted buildings during daytime conditions. This behavior is caused by the much smaller inertia of the outermost roof/wall layer in the retrofitting case, which is thermally decoupled from the inner roof/wall layers by an insulation layer. As a result, the outermost layer heats up more rigorously during the daytime, leading to increased sensible heat fluxes into the atmosphere. During the nighttime, the outermost layer’s temperature drops down faster, resulting in cooling of the atmosphere. However, as the simulation progresses, the cooling effect becomes smaller and the warming effect becomes larger. After 1 week, we find the mean temperatures to be 4 K higher during the daytime while the cooling effects become negligible. Significance Statement Building retrofitting is taking place in Europe and other continents as a measure to reduce energy consumption. The change in the building envelope directly influences the urban atmosphere. Our study reveals that areawide retrofitting in a German city district can have negative effects on the outdoor microclimate in summer by causing higher air temperatures.more » « less
An official website of the United States government

