skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coxeter submodular functions and deformations of Coxeter permutahedra
Award ID(s):
1764370 1855610
PAR ID:
10186863
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Advances in Mathematics
Volume:
365
Issue:
C
ISSN:
0001-8708
Page Range / eLocation ID:
107039
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Ehrhart theory mesures a polytope P discretely by counting the lattice points inside its dilates P, 2P, 3P, ..... We compute the Ehrhart theory of four families of polytopes of great importance in several areas of mathematics: the standard Coxeter permutahedra for the classical Coxeter groups An, Bn, Cn, Dn. A central tool, of independent interest, is a description of the Ehrhart theory of a rational translate of an integer projection of a cube. 
    more » « less
  2. Abstract We solve two open problems in Coxeter–Catalan combinatorics. First, we introduce a family of rational noncrossing objects for any finite Coxeter group, using the combinatorics of distinguished subwords. Second, we give a type‐uniform proof that these noncrossing Catalan objects are counted by the rational Coxeter–Catalan number, using the character theory of the associated Hecke algebra and the properties of Lusztig's exotic Fourier transform. We solve the same problems for rational noncrossing parking objects. 
    more » « less
  3. We investigate representations of Coxeter groups into\mathrm{GL}(n,\mathbb{R})as geometric reflection groups which are convex cocompact in the projective space\mathbb{P}(\mathbb{R}^{n}). We characterize which Coxeter groups admit such representations, and we fully describe the corresponding spaces of convex cocompact representations as reflection groups, in terms of the associated Cartan matrices. The Coxeter groups that appear include all infinite word hyperbolic Coxeter groups; for such groups, the representations as reflection groups that we describe are exactly the projective Anosov ones. We also obtain a large class of nonhyperbolic Coxeter groups, thus providing many examples for the theory of nonhyperbolic convex cocompact subgroups in\mathbb{P}(\mathbb{R}^{n})developed by Danciger–Guéritaud–Kassel (2024). 
    more » « less