skip to main content


Title: Investigating Sports Commentator Bias within a Large Corpus of American Football Broadcasts
Sports broadcasters inject drama into play-by-play commentary by building team and player narratives through subjective analyses and anecdotes. Prior studies based on small datasets and manual coding show that such theatrics evince commentator bias in sports broadcasts. To examine this phenomenon, we assemble FOOTBALL, which contains 1,455 broadcast transcripts from American football games across six decades that are automatically annotated with 250K player mentions and linked with racial metadata. We identify major confounding factors for researchers examining racial bias in FOOTBALL, and perform a computational analysis that supports conclusions from prior social science studies.  more » « less
Award ID(s):
1814955
NSF-PAR ID:
10186973
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
Page Range / eLocation ID:
6354 to 6360
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    What do football passes and financial transactions have in common? Both are networked walk processes that we can observe, where records take the form of timestamped events that move something tangible from one node to another. Here we propose an approach to analyze this type of data that extracts the actual trajectories taken by the tangible items involved. The main advantage of analyzing the resulting trajectories compared to using, e.g., existing temporal network analysis techniques, is that sequential, temporal, and domain-specific aspects of the process are respected and retained. As a result, the approach lets us produce contextually-relevant insights. Demonstrating the usefulness of this technique, we consider passing play within association football matches (an unweighted process) and e-money transacted within a mobile money system (a weighted process). Proponents and providers of mobile money care to know how these systems are used—using trajectory extraction we find that 73% of e-money was used for stand-alone tasks and only 21.7% of account holders built up substantial savings at some point during a 6-month period. Coaches of football teams and sports analysts are interested in strategies of play that are advantageous. Trajectory extraction allows us to replicate classic results from sports science on data from the 2018 FIFA World Cup. Moreover, we are able to distinguish teams that consistently exhibited complex, multi-player dynamics of play during the 2017–2018 club season using ball passing trajectories, coincidentally identifying the winners of the five most competitive first-tier domestic leagues in Europe.

     
    more » « less
  2. High testosterone is associated with increased physical performance in sports due to its stimulation with body-muscle ratio, lean mass (muscle and bone), and bone density. Several studies show athletes with better explosive strength and sprint running performances in football, have a higher basal level of testosterone. The results suggest a relationship between testosterone production and the development of fast-twitch muscle fibers, endurance training, lean mass, resistance training in athletes as well as motivation for competition. Thus, monitoring testosterone levels is gaining attention to evaluate athletic performance of one's physical performance in sport, fitness, and bodybuilding as well as prevent health risk factors for low levels of testosterone. There have been attempts using optical, electrical and biochemical sensors to monitor testosterone but are difficult to reproduce in large quantities and suffer from limitations of sensitivity, and detection limits. This can be addressed using Molecularly Imprinted Polymers (MIPs) in a point of care (POC) system. Molecularly Imprinted Polymers (MIPs) are a synthetic polymer with cavities in the polymer matrix serve as recognition sites for a specific template molecule, which are detected using electrochemical amperometry. In this paper, we have used MIPs in conjunction with cyclic voltammetry, to produce a viable, ultrasensitive electrochemical sensor for the detection of testosterone from a human sweat sample. This combination of MIPs and cyclic voltammetry allows for a simple, low-cost, mass-producible, and non-invasive method for detecting testosterone in human males. This method is extremely simple and cheap, allowing for consistent measurement of Testosterone levels in humans and allows for the detection of Testosterone in a POC. In our work, a Screen-printed carbon electrode (SPCE) using polypropylene fabric was used as the base working electrode in a three-electrode system. The screen-printing technique was implemented to layer a carbon paste over both sides of the fabric and was air-dried for one hour at 75⁰C. The SPCE was immersed into an acetate buffer solution that contains a 2.0mM monomer called o-phenylenediamine and with a 0.1mM testosterone template. Electropolymerization was carried out with cyclic voltammetry from a range of 0V to 1.0V, at a scan rate of 50 mV/s, a sensitivity (A/V) of 1e-5A, and for a total of 30 cycles. The set concentration tested was 100-1600 ng/ml of testosterone. The electrochemical characterization will have a potential sweep of -1.2 V to 1.2 V, a scan rate of 0.05 (V/s), a sensitivity (A/V) of 1e-5A, and a singular cycle. The wearable biosensor showed a detection range for testosterone from 100ng to 1600ng, electrochemical results also showed a clear and measurable result with an R-square value of 0.9417 which proves the accuracy of the developed sensor. Although this is not the complete saturation point and theoretically maximum limit of 28,842ng/ml can be achieved although this was not tested. The detectable lowest concentration of testosterone was found to be ~100ng/ml, and it was noted that lower than 100ng gives a weaker signal, In conclusion a novel electrochemical sensor based on a molecularly imprinted polymer used as the extended gate of a field effect transistor was developed for the ultrasensitive detection of sweat Testosterone. This sensing technology paves the way for the low cost, label-free, and point of care detection which can be used for evaluating ang monitoring athletic performance. 
    more » « less
  3. Abstract Background

    Women and people of color continue to be underrepresented in many STEM fields and careers. Many studies have linked societal biases against the mathematical abilities of women and people of color to this underrepresentation, as well as to earlier measures of mathematical confidence and performance. Recent studies have shown that teachers may unintentionally have biases that reflect those in broader society. Yet, many studies on teachers’ reports of students’ abilities use data in the field—not experimental data—and thus often cannot say if the findings reflect bias or actual differences. The few experimental studies conducted suggest bias against the abilities of girls and students of color, but the prior work has limitations, which we seek to address (e.g., local samples, no exploration of moderators, no preregistration).

    Methods

    In this preregistered experiment of 458 teachers across the U.S., we randomly assigned gender- and race-specific names to solutions to math problems, then asked teachers to rate the correctness of the solution, as well as the student’s math ability and effort. Teachers also completed scales reflecting their own beliefs and dispositions, which we then assessed how those beliefs/dispositions moderated their biases. We used multilevel modeling to account for the nested data structure.

    Results

    Consistent with our preregistered hypotheses, when the solution was not fully correct, findings suggest teachers thought boys had higher ability, even though the same teachers did not report differences in the correctness of the solution or perceived effort. Moreover, teachers who reported that gender disparities no longer exist in society were particularly likely to underestimate girls’ abilities. Although findings revealed no evidence of racial bias on average, teachers’ math anxiety moderated their ability judgments of students from different races, albeit with only marginal significance; teachers with high math anxiety tended to assume that White students had higher math ability than students of color.

    Conclusions

    The present research identifies teachers’ beliefs and dispositions that moderate their gender and racial biases. This experimental evidence sheds new light on why even low-performing boys consistently report higher math confidence and pursue STEM—namely, their teachers believe they have higher mathematical ability.

     
    more » « less
  4. Visual body signals are designated body poses that deliver an application-specific message. Such signals are widely used for fast message communication in sports (signaling by umpires and referees), transportation (naval officers and aircraft marshallers), and construction (signaling by riggers and crane operators), to list a few examples. Automatic interpretation of such signals can help maintaining safer operations in these industries, help in record-keeping for auditing or accident investigation purposes, and function as a score-keeper in sports. When automation of these signals is desired, it is traditionally performed from a viewer's perspective by running computer vision algorithms on camera feeds. However, computer vision based approaches suffer from performance deterioration in scenarios such as lighting variations, occlusions, etc., might face resolution limitations, and can be challenging to install. Our work, ViSig, breaks with tradition by instead deploying on-body sensors for signal interpretation. Our key innovation is the fusion of ultra-wideband (UWB) sensors for capturing on-body distance measurements, inertial sensors (IMU) for capturing orientation of a few body segments, and photodiodes for finger signal recognition, enabling a robust interpretation of signals. By deploying only a small number of sensors, we show that body signals can be interpreted unambiguously in many different settings, including in games of Cricket, Baseball, and Football, and in operational safety use-cases such as crane operations and flag semaphores for maritime navigation, with > 90% accuracy. Overall, we have seen substantial promise in this approach and expect a large body of future follow-on work to start using UWB and IMU fused modalities for the more general human pose estimation problems. 
    more » « less
  5. In sports, Play Diagrams are the standard way to represent and convey information. They are widely used by coaches, managers, journalists and fans in general. There are situations where diagrams may be hard to understand, for example, when several actions are packed in a certain region of the field or there are just too many actions to be transformed in a clear depiction of the play. The representation of how actions develop through time, in particular, may be hardly achieved on such diagrams. The time, and the relationship among the actions of the players through time, is critical on the depiction of complex plays. In this context, we present a study on how player actions may be clearly depicted on 2D diagrams. The study is focused on Baseball plays, a sport where diagrams are heavily used to summarize the actions of the players. We propose a new and simple approach to represent spatiotemporal information in the form of a timeline. We designed our visualization with a requirement driven approach, conducting interviews and fulfilling the needs of baseball experts and expert-fans. We validate our approach by presenting a detailed analysis of baseball plays and conducting interviews with four domain experts. 
    more » « less